Skip to main content
Log in

Compass in the ear: can animals sense magnetic fields with hair cells?

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The possibility of realization of magnetoreception in vertebrates with chains of magnetite nanocrystals (magnetosomes) attached to hair cells of the inner ear is evaluated. To this end, statistical mechanics is applied to analyze fluctuations of stereocilia bundles. Correlation functions of fluctuations of the bundle position and of the number of open mechanoreceptor channels are derived. The sensitivity threshold of the hair cell to applied forces is calculated. Its comparison with the force couple exerted by the magnetosome in the geomagnetic field suggests that a compass magnetoreceptor can be realized with ~ 100 specifically adapted hair cells. To the opposite, no viable magnetic map receptor is possible within this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Mouritsen, Nature 558, 50 (2018)

    Article  ADS  Google Scholar 

  2. R.Wiltschko and W.Wiltschko, this issue

  3. W. Wiltschko, R. Wiltschko, Science 176, 62 (1972)

    Article  ADS  Google Scholar 

  4. E.D. Yorke, J. Theor. Biol. 77, 101 (1979)

    Article  ADS  Google Scholar 

  5. J. Kirschvink, J. Gould, BioSystems 13, 181 (1981)

    Article  Google Scholar 

  6. K. Schulten, C.E. Swenberg, A. Weller, Z. Phys. Chem. (NF) 111, 1 (1978)

    Article  Google Scholar 

  7. T. Ritz, S. Adem, K. Schulten, Biophys. J. 78, 707 (2000)

    Article  Google Scholar 

  8. S. Nimpf et al., Curr. Biol. 29, 1 (2019)

    Article  Google Scholar 

  9. P.J. Hore, H. Mouritsen, Annu. Rev. Biophys. 45, 299 (2016)

    Article  Google Scholar 

  10. H. Burda, S. Marhold, T. Westenberger, R. Wiltschko, W. Wiltschko, Experientia 46, 528 (1990)

    Article  Google Scholar 

  11. U. Munro, J.A. Munro, J.B. Phillips, R. Wiltschko, W. Wiltschko, Naturwissenschaften 84(1), 26 (1997)

    Article  ADS  Google Scholar 

  12. T. Reichenbach, A.J. Hudspeth, Rep. Prog. Phys. 77, 076601 (2014)

    Article  ADS  Google Scholar 

  13. D.Ó. Maoiléidigh, A.J. Ricci, Trends Neurosci. 42, 221 (2019)

    Article  Google Scholar 

  14. G.A. Caprara, A.W. Peng, Mol. Cell. Neurosci. 120, 103706 (2022)

    Article  Google Scholar 

  15. R. Fettiplace, Compr. Physiol. 7, 1197 (2017)

    Article  Google Scholar 

  16. R. Fettiplace, K.X. Kim, Physiol. Rev. 94, 951 (2014)

    Article  Google Scholar 

  17. P. Martin, A.J. Hudspeth, Annu. Rev. Condens. Matter Phys. 12, 29 (2021)

    Article  ADS  Google Scholar 

  18. F. Curdt, K. Haase, L. Ziegenbalg, H. Greb, D. Heyers, M. Winklhofer, Sci. Rep. 12, 8803 (2022)

    Article  ADS  Google Scholar 

  19. M. Winklhofer, J.L. Kirschvink, J.R. Soc, Interface 7, S273 (2010)

    Google Scholar 

  20. J. Howard, A. Hudspeth, Neuron 1, 189 (1988)

    Article  Google Scholar 

  21. D. Rowland, Y. Roongthumskul, J.-H. Lee, J. Cheon, D. Bozovic, Appl. Phys. Lett. 99, 193701 (2011)

    Article  ADS  Google Scholar 

  22. J.H. Lee, J.-W. Kim, M. Levy, A. Kao, S.-H. Noh, D. Bozovic, J. Cheon, ACS Nano 8, 6590 (2014)

    Article  Google Scholar 

  23. C. Kittel, H. Kroemer, Thermal Physics, 2nd edn. (W. H. Freeman, 1980). (Chapter 1)

    Google Scholar 

  24. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1980). (Chap. 12)

    MATH  Google Scholar 

  25. D. Faivre, D. Schueler, Chem. Rev. 108, 4875 (2008)

    Article  Google Scholar 

  26. B.H. Lower, D.A. Bazylinski, J. Mol. Microbiol. Biotechnol. 23, 63 (2013)

    Google Scholar 

  27. D.T. Edmonds, Proc. R. Soc. Lond. B 249, 27 (1992)

    Article  ADS  Google Scholar 

  28. A.V. Komolkin et al., J. R. Soc. Interface 14, 20161002 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to M. I. Zhukovskaya for helpful discussions on sensory physiology. This work was supported by the Russian Science Foundation (grant 21-14-00158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kavokin.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavokin, K.V. Compass in the ear: can animals sense magnetic fields with hair cells?. Eur. Phys. J. Spec. Top. 232, 261–268 (2023). https://doi.org/10.1140/epjs/s11734-022-00654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00654-y

Navigation