Skip to main content
Log in

Inverse chaotic resonance in Hodgkin–Huxley neuronal system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Inverse chaotic resonance is a phenomenon in which the neuronal mean firing rate exhibits a minimum with respect to the chaotic activity. In this paper, the inverse chaotic resonance phenomenon is investigated in the case of a single Hodgkin–Huxley neuron and a Hodgkin–Huxley neuronal small-world network, respectively. It is found that the inverse chaotic resonance can be modulated by the neuronal excitation level, and the duration of the inverse chaotic resonance is longer near the excitation threshold. Furthermore, we investigated the effect of chaotic activity on the collective discharge behavior of the small-world network. We find that the emergence of inverse chaotic resonance depends on the interplay between each neuron’s excitation level, chaotic activity, and network inputs, where the latter in turn depend on types of synaptic currents. The inverse chaotic resonance effect is a robust phenomenon that is observed in both individual neurons and neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are included in the paper.]

References

  1. L. Gammaitoni, P. Hänggi, P.J. Marchesoni et al., Rev. Mod. Phys. 70, 223 (1998)

    ADS  Google Scholar 

  2. D.F. Russell, L.A. Wilkens, F. Moss, Nature 402, 291 (1999)

    ADS  Google Scholar 

  3. J.K. Douglass, L. Wilkens, E. Pantazelou et al., Nature 365, 337 (1993)

    ADS  Google Scholar 

  4. S.L. Lu, Q.B. He, J. Wang, Mech. Syst. Signal Pr. 116, 230 (2018)

    Google Scholar 

  5. B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    ADS  Google Scholar 

  6. A. Palonpon, J. Amistoso, J. Holdsworth et al., Opt. Lett. 23, 1480 (1998)

    ADS  Google Scholar 

  7. P. Hänggi, ChemPhysChem 3, 285 (2002)

    Google Scholar 

  8. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)

    ADS  Google Scholar 

  9. K. Wiesenfeld, F. Jaramillo, Chaos 8, 539 (1998)

    ADS  Google Scholar 

  10. A. Longtin, J. Stat. Phys. 70, 309 (1993)

    ADS  Google Scholar 

  11. D. Yu, G.W. Wang, Q.M. Ding et al., Chaos Soliton Fractals 157, 111929 (2022)

    Google Scholar 

  12. H. Yasuda, T. Miyaoka, J. Horiguchi et al., Phys. Rev. Lett. 100, 118103 (2008)

    ADS  Google Scholar 

  13. E. Yilmaz, M. Uzuntarla, M. Ozer et al., Phys. A 392, 5735 (2013)

    MathSciNet  Google Scholar 

  14. G.W. Wang, D. Yu, Q.M. Ding et al., Chaos Soliton Fractals 150, 111210 (2021)

    Google Scholar 

  15. M.Y. Ge, L.L. Lu, Y. Xu et al., Chaos Soliton Fractals 133, 109645 (2020)

    Google Scholar 

  16. D. Paydarfar, D.B. Forger, J.R. Clay, J. Neurophysiol. 96, 3338 (2006)

    Google Scholar 

  17. B.S. Gutkin, J. Jost, H.C. Tuckwell, Naturwissenschaften 96, 1091 (2009)

    ADS  Google Scholar 

  18. D. Guo, Cogn. Neurodyn. 5, 293 (2011)

    Google Scholar 

  19. L.L. Lu, Y. Jia, M.Y. Ge et al., Nonlinear Dyn. 100, 877 (2020)

    Google Scholar 

  20. B. Anatoly, R. Sarah, H. Michael et al., PLoS Comput. Biol. 12, 8 (2016)

    Google Scholar 

  21. M. Uzuntarla, Phys. Lett. A 377, 2585 (2013)

    ADS  MathSciNet  Google Scholar 

  22. M. Uzuntarla, J.R. Cressman, M. Ozer et al., Phys. Rev. E 88, 042712 (2013)

    ADS  Google Scholar 

  23. M. Uzuntarla, J.J. Torres, P. So et al., Phys. Rev. E 95, 012404 (2017)

    ADS  Google Scholar 

  24. M. Uzuntarla, B. Ernest B, J..J. Torres et al., PLoS Comput. Biol. 13, e1005646 (2017)

    Google Scholar 

  25. Y. Zhao, D.X. Li, Mod. Phys. Lett. B 33, 1950252 (2019)

    ADS  Google Scholar 

  26. D.X. Li, S.L. Song, N. Zhang, Int. J. Mod. Phys. B 34, 2050185 (2020)

    ADS  Google Scholar 

  27. J.J. Torres, M. Uzuntarla, J. Marro, Commun. Nonlinear. Sci. 80, 104975 (2020)

    Google Scholar 

  28. D. Yu, L.L. Lu, G.W. Wang et al., Chaos Soliton Fractals 147, 111000 (2021)

    Google Scholar 

  29. F. Parastesh, S. Jafari, H. Azarnoush et al., Phys. Rep. 898, 1 (2021)

    ADS  MathSciNet  Google Scholar 

  30. S. Majhi, B.K. Bera, D. Ghosh, Phys. Life Rev. 28, 100 (2019)

    ADS  Google Scholar 

  31. S. Aghababaei, S. Balaraman, K. Rajagopal et al., Chaos Soliton Fractals 153, 111498 (2021)

    Google Scholar 

  32. Z. Wang, S. Baruni, F. Parastesh et al., Neurocomputing 406, 117 (2020)

    Google Scholar 

  33. Z.L. Hou, J. Ma, X. Zhan et al., Chaos Soliton Fractals 142, 110522 (2021)

    Google Scholar 

  34. L.L. Lu, Y. Jia, Y. Xu et al., Sci. China Technol. Sci. 62, 427 (2019)

    ADS  Google Scholar 

  35. M.S. Kafraj, F. Parastesh, S. Jafari, Chaos Soliton Fractals 137, 109782 (2020)

    Google Scholar 

  36. K.M. Stiefel, B. Englitz, T.J. Sejnowski, Proc. Natl. Acad. Sci. 110, 7886 (2013)

    ADS  Google Scholar 

  37. Y. Liu, J. Ma, Y. Xu et al., Int. J. Bifurcat. Chaos 29, 1950156 (2019)

    Google Scholar 

  38. Y. Xu, Y. Jia, J.B. Kirunda et al., Complexity 2018, 3012743 (2018)

    Google Scholar 

  39. V. Baysal, E. Yilmaz, Physica A 537, 122733 (2020)

    MathSciNet  Google Scholar 

  40. M.Y. Ge, Y. Jia, L.L. Lu et al., Nonlinear Dyn. 99, 2355 (2020)

    Google Scholar 

  41. M.Y. Ge, Y. Jia, Y. Xu, L. Lu et al., Appl. Math. Comput. 352, 136 (2019)

    MathSciNet  Google Scholar 

  42. A. Bahramian, F. Parastesh, V.T. Pham et al., Chaos 31, 033138 (2021)

    ADS  Google Scholar 

  43. M.A. Arbib, J.M. Fellous, Trends Cogn. Sci. 8, 554 (2004)

    Google Scholar 

  44. S.E. Boustani, A. Destexhe, Int. J. Bifurcat. Chaos 20, 1687 (2010)

    Google Scholar 

  45. W.J. Freeman, Chaos 13, 1067 (2003)

    ADS  Google Scholar 

  46. H. Hayashi, S. Ishizuka, K. Hirakawa, J. Phys. Soc. Jpn. 54, 2337 (1985)

    ADS  Google Scholar 

  47. H. Korn, P. Faure, C R Biol. 326, 787 (2003)

    Google Scholar 

  48. C.C. Canavier, J.W. Clark, J.H. Byrne, Biophys. J. 57, 1245 (1990)

    Google Scholar 

  49. B. Jia, H.G. Gu, L. Li et al., Cogn. Neurodyn. 6, 89 (2012)

    Google Scholar 

  50. M. Rosanova, I. Timofeev, J. Physiol. 562, 569 (2005)

    Google Scholar 

  51. C. Vanvreeswijk, H. Sompolinsky, Science 274, 1724 (1996)

    ADS  Google Scholar 

  52. W.J. Freeman, Synerg. Cogn. 45, 126 (1990)

    Google Scholar 

  53. W.J. Freeman, Neural Netw. 13, 11 (2000)

    Google Scholar 

  54. W.J. Freeman, B.C. Burke, M.D. Holmes, Hum. Brain Mapp. 19, 248 (2003)

    Google Scholar 

  55. K. Paul, L.J. Cauller, D.A. Llano, Front. Comput. Neurosci. 10, 91 (2016)

    Google Scholar 

  56. N. Schweighofer, K. Doya, H. Fukai et al., Proc. Natl. Acad. Sci. USA 101, 4655 (2004)

    ADS  Google Scholar 

  57. S. Nobukawa, H. Nishimura, T. Yamanishi et al., PLoS ONE 10, e0138919 (2015)

    Google Scholar 

  58. V. Baysal, Z. Sara, E. Yilmaz, Nonlinear Dyn. 97, 1275 (2019)

    Google Scholar 

  59. V. Baysal, E. Yilmaz, Appl. Math. Comput. 411, 126540 (2021)

    Google Scholar 

  60. D. Yu, X.Y. Zhou, G.W. Wang et al., Cogn. Neurodyn. (2021). https://doi.org/10.1007/s11571-021-09743-5

    Article  Google Scholar 

  61. A.L. Hodgkin, A.F. Huxley, J. Physiol. 116, 497 (1952)

    Google Scholar 

  62. J. Ma, H. Ying, Z. Pu, Chin. Phys. Lett. 22, 1065 (2005)

    ADS  Google Scholar 

  63. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Google Scholar 

  64. D. Somers, N. Kopell, Biol. Cybern. 68, 393 (1993)

    Google Scholar 

  65. M. Uzuntarla, J.J. Torres, A. Calim et al., Neural Netw. 110, 131 (2018)

    Google Scholar 

  66. D.S. Bassett, A. Meyer-Lindenberg, S. Achard et al., Proc. Natl. Acad. Sci. USA 103, 19518 (2006)

    ADS  Google Scholar 

  67. A.R. Osborne, A. Provenzale, Physica D 35, 357 (1989)

    ADS  MathSciNet  Google Scholar 

  68. P.E. Rapp, A.M. Albano, T. Schmah et al., Phys. Rev. E 47, 2289 (1993)

    ADS  Google Scholar 

  69. M. Xue, B.V. Atallah, M. Scanziani, Nature 511, 596 (2014)

    ADS  Google Scholar 

  70. Y. Xu, Y. Guo, G. Ren, J. Ma, J. Appl. Math. Comput. 385, 125427 (2020)

    Google Scholar 

  71. P. Zhou, Z. Yao, J. Ma, Chaos Soliton Fractals 145, 110751 (2021)

    Google Scholar 

  72. Y. Zhang, Y. Xu, Z. Yao et al., Nonlinear Dyn. 102, 1849 (2020)

    Google Scholar 

  73. Y. Liu, W. Xu, J. Ma et al., Front. Inform. Technol. 21, 1387 (2020)

    Google Scholar 

  74. G.W. Wang, L.J. Yang, X. Zhan et al., Nonlinear Dyn. 107, 3945 (2022)

    Google Scholar 

  75. Q.M. Ding, Y. Jia, Chaos 31, 053102 (2021)

    ADS  Google Scholar 

  76. V. Baysal, E. Erkan, E. Yilmaz, Philos. T R Soc. A 379, 20200237 (2021)

    ADS  Google Scholar 

  77. E. Yilmaz, V. Baysal, M. Perc et al., Sci. China Technol. Sci. 59, 364 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant no.12175080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Wu, Y., Ye, Z. et al. Inverse chaotic resonance in Hodgkin–Huxley neuronal system. Eur. Phys. J. Spec. Top. 231, 4097–4107 (2022). https://doi.org/10.1140/epjs/s11734-022-00629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00629-z

Navigation