Skip to main content

Mixed convection in a double lid-driven rectangular cavity filled with hybrid nanofluid subjected to non-uniform heating using finite-volume method

Abstract

Mixed convection in a rectangular double lid-driven cavity filled with hybrid nanofluid (Al\(_2\)O\(_3\)–Cu–water) subjected to insulated sidewalls and sinusoidal temperature on horizontal walls is numerically investigated. Using the SIMPLE algorithm for pressure, velocity coupling, the momentum, mass conservation, and energy equations are numerically solved by the finite-volume method (FVM). The data were validated by comparing the present results with the results of the problem solved by Sarris et al. (Numer Heat Transf Part A Appl 42(5):513–530, 2010) for pure liquid. The effects of amplitude ratio, phase deviation, and Reynolds numbers on the flow and heat transfer characteristics are discussed. It is found that the rate of heat transfer is improved as the volume fraction of the hybrid nanoparticles and the amplitude ratio are increased. The non-uniform heating at cavity walls tend to provide higher heat transfer rate and the heat transfer rate increases with respect to Reynolds number.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982). https://doi.org/10.1016/0021-9991(82)90058-4

    Article  ADS  MATH  Google Scholar 

  2. M.C. Thompson, J.H. Ferziger, An adaptive multigrid technique for the incompressible Navier–Stokes equations. J. Comput. Phys. 82(1), 94–121 (1989). https://doi.org/10.1016/0021-9991(89)90037-5

    Article  ADS  MATH  Google Scholar 

  3. S.R. Bhopalam, D.A. Perumal, A.K. Yadav, Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities. Int. J. Mech. Sci. 196, 106303 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106303

  4. A.Y. Wang, H. Xu, Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined square lid-driven cavity. Comput. Math. Appl. 108, 88–108 (2022). https://doi.org/10.1016/j.camwa.2022.01.004

    MathSciNet  Article  MATH  Google Scholar 

  5. M. Turkyilmazoglu, Driven flow motion by a dually moving lid of a square cavity. Eur. J. Mech. B Fluids 94, 17–28 (2022). https://doi.org/10.1016/j.euromechflu.2022.02.005

    MathSciNet  Article  ADS  Google Scholar 

  6. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

    Article  MATH  Google Scholar 

  7. H.M. Elshehabey, S.E. Ahmed, MHD mixed convection in a lid-driven cavity filled by a nanofluid with sinusoidal temperature distribution on the both vertical walls using Buongiorno ’ s nanofluid model. Int. J. Heat Mass Transfer 88, 181–202 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.039

    Article  Google Scholar 

  8. I.E. Sarris, I. Lekakis, N.S. Vlachos, Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transf. Part A Appl. 42(5), 513–530 (2010)

    Article  ADS  Google Scholar 

  9. T. Basak, S. Roy, A.R. Balakrishnan, Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.015

    Article  MATH  Google Scholar 

  10. E. Bilgen, R. BenYedder, Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side. Int. J. Heat Mass Transf. 50(1–2), 139–150 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.027

    Article  MATH  Google Scholar 

  11. M. Sathiyamoorthy, T. Basak, S. Roy, I. Pop, Steady natural convection flows in a square cavity with linearly heated side wall(s). Int. J. Heat Mass Transf. 50(3–4), 766–775 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.019

    Article  MATH  Google Scholar 

  12. S.E. Ahmed, M.A. Mansour, A. Mahdy, MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: effect of non-uniform heating on both side walls. Nucl. Eng. Des. 265, 938–948 (2013). https://doi.org/10.1016/j.nucengdes.2013.06.023

    Article  Google Scholar 

  13. S. Sivasankaran, K.L. Pan, Numerical simulation on mixed convection in a porous lid-driven cavity with nonuniform heating on both side walls. Numer. Heat Transf. Part A Appl. 61(2), 101–121 (2012). https://doi.org/10.1080/10407782.2011.643741

    Article  ADS  Google Scholar 

  14. S. Sivasankaran, V. Sivakumar, P. Prakash, Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls. Int. J. Heat Mass Transf. 53(19–20), 4304–4315 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.059

    Article  MATH  Google Scholar 

  15. V. Sivakumar, S. Sivasankaran, Mixed convection in an inclined lid-driven cavity with non-uniform heating on both sidewalls. J. Appl. Mech. Tech. Phys. 55(4), 634–649 (2014). https://doi.org/10.1134/S0021894414040105

    Article  ADS  Google Scholar 

  16. A.A. Abbasian Arani, S. Mazrouei Sebdani, M. Mahmoodi, A. Ardeshiri, M. Aliakbari, Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on sidewalls using nanofluid. Superlattices Microstruct. 51(6), 893–911 (2012). https://doi.org/10.1016/j.spmi.2012.02.015

    Article  ADS  Google Scholar 

  17. S. Sivasankaran, A. Malleswaran, J. Lee, P. Sundar, Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls. Int. J. Heat Mass Transf. 54(1–3), 512–525 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.018

    Article  MATH  Google Scholar 

  18. H.F. Oztop, E. Abu-Nada, Y. Varol, K. Al-Salem, Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 49(4), 453–467 (2011). https://doi.org/10.1016/j.spmi.2011.01.002

    Article  ADS  Google Scholar 

  19. Q.H. Deng, J.J. Chang, Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls. Numer. Heat Transf. Part A Appl. 54(5), 507–524 (2008). https://doi.org/10.1080/01457630802186080

    Article  ADS  Google Scholar 

  20. M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49(9), 1856–1865 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.04.014

    Article  Google Scholar 

  21. M. Sathiyamoorthy, A.J. Chamkha, Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 22(5), 677–698 (2012). https://doi.org/10.1108/09615531211231307

    Article  MATH  Google Scholar 

  22. M. Bhuvaneswari, S. Sivasankaran, Y.J. Kim, Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls. Numer. Heat Transf. Part A Appl. 59(3), 167–184 (2011). https://doi.org/10.1080/10407782.2011.541219

    Article  ADS  Google Scholar 

  23. T. Basak, A.J. Chamkha, Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55(21–22), 5526–5543 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.025

    Article  Google Scholar 

  24. T. Basak, R. Anandalakshmi, A. Kumar Singh, Heatline analysis on thermal management with conjugate natural convection in a square cavity. Chem. Eng. Sci. 93, 67–90 (2013). https://doi.org/10.1016/j.ces.2013.01.033

    Article  Google Scholar 

  25. P. Biswal, T. Basak, Sensitivity of heatfunction boundary conditions on invariance of Bejan’s heatlines for natural convection in enclosures with various wall heatings. Int. J. Heat Mass Transf. 89, 1342–1368 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.030

    Article  Google Scholar 

  26. A.B.D.A. Nield, Convection in Porous Media (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  27. P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media (Springer, New York, 2008)

    Book  Google Scholar 

  28. K. Vafai, Handbook of Porous Media (Taylor and Francis, New York, 2005)

    Book  MATH  Google Scholar 

  29. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al 2O 3-Cu/water hybrid nanofluid in heat transfer. Exp. Thermal Fluid Sci. 38, 54–60 (2012). https://doi.org/10.1016/j.expthermflusci.2011.11.007

    Article  Google Scholar 

  30. A.J. Chamkha, I.V. Miroshnichenko, M.A. Sheremet, Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J. Therm. Sci. Eng. Appl. 9, 4 (2017). https://doi.org/10.1115/1.4036203

    Article  Google Scholar 

  31. A.I. Alsabery, I. Hashim, A. Hajjar, M. Ghalambaz, S. Nadeem, M. Saffari Pour, Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies 13(11), 2942, 1–25 (2020). https://doi.org/10.3390/en13112942

    Article  Google Scholar 

  32. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011). https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  33. A.I. Alsabery, H.T. Kadhim, M.A. Ismael, I. Hashim, A.J. Chamkha, Impacts of amplitude and heat source on natural convection of hybrid nanofluids into a wavy enclosure via heatline approach. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1896819

    Article  Google Scholar 

  34. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington DC, 1980)

    MATH  Google Scholar 

  35. A.M. Rashad, A.J. Chamkha, M.A. Ismael, T. Salah, Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al\(_2\)O\(_3\)/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transfer 140, 7 (2018). https://doi.org/10.1115/1.4039213

    Article  Google Scholar 

  36. A. Arefmanesh, M. Mahmoodi, Effects of uncertainties of viscosity models for Al\(_2\)O\(_3\)-water nanofluid on mixed convection numerical simulations. Int. J. Therm. Sci. 50(9), 1706–1719 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.007

    Article  Google Scholar 

  37. O.A. Beg, K. Venkatadri, V.R. Prasad, T.A. Beg, A. Kadir, H.J. Leonard, Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects. Mater. Sci. Eng., B 261, 114772 (2020). https://doi.org/10.1016/j.mseb.2020.114722

  38. K. Venkatadri, O.A. Beg, P. Rajarajeswar, V.R. Prasad, Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: heat flow visualization through energy flux vectors. Int. J. Mech. Sci. 171, 105391 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105391

  39. V. Chandanam, L.C. Venkata, K. Venkatadri, O.A. Beg, V.R. Prasad, Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. Eur. Phys. J. Plus 136(8), 885 (2021). https://doi.org/10.1140/epjp/s13360-021-01881-3

  40. T.S. Devi, C. VenkataLakshmi, K. Venkatadri, M.S. Reddy, Influence of external magnetic wire on natural convection of non-Newtonian fluid in a square cavity. Partial Differ. Equ. Appl. Math. 4, 100041 (2021). https://doi.org/10.1016/j.padiff.2021.100041

    Article  Google Scholar 

  41. K. Venkatadri, S.A. Gaffar, C.S. Babu, S. Fazuruddin, MHD radiative heat transfer analysis of Carreau nanofluid flow past over a vertical plate: a numerical study. Nanosci. Techno. Int. J. 12(4), 81–103 (2021). https://doi.org/10.1615/NanoSciTechnolIntJ.2021035659

    Article  Google Scholar 

  42. K. Venkatadri, A. Shobha, C.V. Lakshmi, V.R. Prasad, B.M. HidayathullaKhan, Influence of magnetic wire positions on free convection of Fe\(_3\)O\(_4\)-water nanofluid in a square enclosure utilizing with MAC Algorithm. J. Comput. Appl. Mech. 51(2), 323–331 (2020). https://doi.org/10.22059/jcamech.2019.288693.426

    Article  Google Scholar 

  43. K. Venkatadri, S.A. Gaffar, V.R. Prasad, B.M. HidayathullaKhan, O.A. Beg, Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure. Int. J. Autom. Mech. Eng. 16(4), 7375–7390 (2019). https://doi.org/10.15282/ijame.16.4.2019.13.0547

    Article  Google Scholar 

Download references

Acknowledgements

This research received funding from the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme Vot No. FRGS/1/2019/UTHM/K172 and partially sponsored by Universiti Tun Hussein Onn Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roslan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, I.R., Alsabery, A.I., Mohamad, M. et al. Mixed convection in a double lid-driven rectangular cavity filled with hybrid nanofluid subjected to non-uniform heating using finite-volume method. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00602-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00602-w