U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982). https://doi.org/10.1016/0021-9991(82)90058-4
Article
ADS
MATH
Google Scholar
M.C. Thompson, J.H. Ferziger, An adaptive multigrid technique for the incompressible Navier–Stokes equations. J. Comput. Phys. 82(1), 94–121 (1989). https://doi.org/10.1016/0021-9991(89)90037-5
Article
ADS
MATH
Google Scholar
S.R. Bhopalam, D.A. Perumal, A.K. Yadav, Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities. Int. J. Mech. Sci. 196, 106303 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106303
A.Y. Wang, H. Xu, Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined square lid-driven cavity. Comput. Math. Appl. 108, 88–108 (2022). https://doi.org/10.1016/j.camwa.2022.01.004
MathSciNet
Article
MATH
Google Scholar
M. Turkyilmazoglu, Driven flow motion by a dually moving lid of a square cavity. Eur. J. Mech. B Fluids 94, 17–28 (2022). https://doi.org/10.1016/j.euromechflu.2022.02.005
MathSciNet
Article
ADS
Google Scholar
R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
Article
MATH
Google Scholar
H.M. Elshehabey, S.E. Ahmed, MHD mixed convection in a lid-driven cavity filled by a nanofluid with sinusoidal temperature distribution on the both vertical walls using Buongiorno ’ s nanofluid model. Int. J. Heat Mass Transfer 88, 181–202 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.039
Article
Google Scholar
I.E. Sarris, I. Lekakis, N.S. Vlachos, Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transf. Part A Appl. 42(5), 513–530 (2010)
Article
ADS
Google Scholar
T. Basak, S. Roy, A.R. Balakrishnan, Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.015
Article
MATH
Google Scholar
E. Bilgen, R. BenYedder, Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side. Int. J. Heat Mass Transf. 50(1–2), 139–150 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.027
Article
MATH
Google Scholar
M. Sathiyamoorthy, T. Basak, S. Roy, I. Pop, Steady natural convection flows in a square cavity with linearly heated side wall(s). Int. J. Heat Mass Transf. 50(3–4), 766–775 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.019
Article
MATH
Google Scholar
S.E. Ahmed, M.A. Mansour, A. Mahdy, MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: effect of non-uniform heating on both side walls. Nucl. Eng. Des. 265, 938–948 (2013). https://doi.org/10.1016/j.nucengdes.2013.06.023
Article
Google Scholar
S. Sivasankaran, K.L. Pan, Numerical simulation on mixed convection in a porous lid-driven cavity with nonuniform heating on both side walls. Numer. Heat Transf. Part A Appl. 61(2), 101–121 (2012). https://doi.org/10.1080/10407782.2011.643741
Article
ADS
Google Scholar
S. Sivasankaran, V. Sivakumar, P. Prakash, Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls. Int. J. Heat Mass Transf. 53(19–20), 4304–4315 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.059
Article
MATH
Google Scholar
V. Sivakumar, S. Sivasankaran, Mixed convection in an inclined lid-driven cavity with non-uniform heating on both sidewalls. J. Appl. Mech. Tech. Phys. 55(4), 634–649 (2014). https://doi.org/10.1134/S0021894414040105
Article
ADS
Google Scholar
A.A. Abbasian Arani, S. Mazrouei Sebdani, M. Mahmoodi, A. Ardeshiri, M. Aliakbari, Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on sidewalls using nanofluid. Superlattices Microstruct. 51(6), 893–911 (2012). https://doi.org/10.1016/j.spmi.2012.02.015
Article
ADS
Google Scholar
S. Sivasankaran, A. Malleswaran, J. Lee, P. Sundar, Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls. Int. J. Heat Mass Transf. 54(1–3), 512–525 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.018
Article
MATH
Google Scholar
H.F. Oztop, E. Abu-Nada, Y. Varol, K. Al-Salem, Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 49(4), 453–467 (2011). https://doi.org/10.1016/j.spmi.2011.01.002
Article
ADS
Google Scholar
Q.H. Deng, J.J. Chang, Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls. Numer. Heat Transf. Part A Appl. 54(5), 507–524 (2008). https://doi.org/10.1080/01457630802186080
Article
ADS
Google Scholar
M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49(9), 1856–1865 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.04.014
Article
Google Scholar
M. Sathiyamoorthy, A.J. Chamkha, Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 22(5), 677–698 (2012). https://doi.org/10.1108/09615531211231307
Article
MATH
Google Scholar
M. Bhuvaneswari, S. Sivasankaran, Y.J. Kim, Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls. Numer. Heat Transf. Part A Appl. 59(3), 167–184 (2011). https://doi.org/10.1080/10407782.2011.541219
Article
ADS
Google Scholar
T. Basak, A.J. Chamkha, Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55(21–22), 5526–5543 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.025
Article
Google Scholar
T. Basak, R. Anandalakshmi, A. Kumar Singh, Heatline analysis on thermal management with conjugate natural convection in a square cavity. Chem. Eng. Sci. 93, 67–90 (2013). https://doi.org/10.1016/j.ces.2013.01.033
Article
Google Scholar
P. Biswal, T. Basak, Sensitivity of heatfunction boundary conditions on invariance of Bejan’s heatlines for natural convection in enclosures with various wall heatings. Int. J. Heat Mass Transf. 89, 1342–1368 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.030
Article
Google Scholar
A.B.D.A. Nield, Convection in Porous Media (Springer, New York, 1992)
Book
MATH
Google Scholar
P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media (Springer, New York, 2008)
Book
Google Scholar
K. Vafai, Handbook of Porous Media (Taylor and Francis, New York, 2005)
Book
MATH
Google Scholar
S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al 2O 3-Cu/water hybrid nanofluid in heat transfer. Exp. Thermal Fluid Sci. 38, 54–60 (2012). https://doi.org/10.1016/j.expthermflusci.2011.11.007
Article
Google Scholar
A.J. Chamkha, I.V. Miroshnichenko, M.A. Sheremet, Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J. Therm. Sci. Eng. Appl. 9, 4 (2017). https://doi.org/10.1115/1.4036203
Article
Google Scholar
A.I. Alsabery, I. Hashim, A. Hajjar, M. Ghalambaz, S. Nadeem, M. Saffari Pour, Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies 13(11), 2942, 1–25 (2020). https://doi.org/10.3390/en13112942
Article
Google Scholar
M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011). https://doi.org/10.1016/j.enconman.2010.06.072
Article
Google Scholar
A.I. Alsabery, H.T. Kadhim, M.A. Ismael, I. Hashim, A.J. Chamkha, Impacts of amplitude and heat source on natural convection of hybrid nanofluids into a wavy enclosure via heatline approach. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1896819
Article
Google Scholar
S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington DC, 1980)
MATH
Google Scholar
A.M. Rashad, A.J. Chamkha, M.A. Ismael, T. Salah, Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al\(_2\)O\(_3\)/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transfer 140, 7 (2018). https://doi.org/10.1115/1.4039213
Article
Google Scholar
A. Arefmanesh, M. Mahmoodi, Effects of uncertainties of viscosity models for Al\(_2\)O\(_3\)-water nanofluid on mixed convection numerical simulations. Int. J. Therm. Sci. 50(9), 1706–1719 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.007
Article
Google Scholar
O.A. Beg, K. Venkatadri, V.R. Prasad, T.A. Beg, A. Kadir, H.J. Leonard, Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects. Mater. Sci. Eng., B 261, 114772 (2020). https://doi.org/10.1016/j.mseb.2020.114722
K. Venkatadri, O.A. Beg, P. Rajarajeswar, V.R. Prasad, Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: heat flow visualization through energy flux vectors. Int. J. Mech. Sci. 171, 105391 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105391
V. Chandanam, L.C. Venkata, K. Venkatadri, O.A. Beg, V.R. Prasad, Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. Eur. Phys. J. Plus 136(8), 885 (2021). https://doi.org/10.1140/epjp/s13360-021-01881-3
T.S. Devi, C. VenkataLakshmi, K. Venkatadri, M.S. Reddy, Influence of external magnetic wire on natural convection of non-Newtonian fluid in a square cavity. Partial Differ. Equ. Appl. Math. 4, 100041 (2021). https://doi.org/10.1016/j.padiff.2021.100041
Article
Google Scholar
K. Venkatadri, S.A. Gaffar, C.S. Babu, S. Fazuruddin, MHD radiative heat transfer analysis of Carreau nanofluid flow past over a vertical plate: a numerical study. Nanosci. Techno. Int. J. 12(4), 81–103 (2021). https://doi.org/10.1615/NanoSciTechnolIntJ.2021035659
Article
Google Scholar
K. Venkatadri, A. Shobha, C.V. Lakshmi, V.R. Prasad, B.M. HidayathullaKhan, Influence of magnetic wire positions on free convection of Fe\(_3\)O\(_4\)-water nanofluid in a square enclosure utilizing with MAC Algorithm. J. Comput. Appl. Mech. 51(2), 323–331 (2020). https://doi.org/10.22059/jcamech.2019.288693.426
Article
Google Scholar
K. Venkatadri, S.A. Gaffar, V.R. Prasad, B.M. HidayathullaKhan, O.A. Beg, Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure. Int. J. Autom. Mech. Eng. 16(4), 7375–7390 (2019). https://doi.org/10.15282/ijame.16.4.2019.13.0547
Article
Google Scholar