Skip to main content
Log in

Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity

Multiple partial MHD effect on Ag-MgO/H\(_2\)O nanofluid flow in a trapezoidal shaped cavity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, a numerical investigation on natural convection flow of silver(Ag)-magnesium oxide(MgO)-water hybrid nanofluid in a trapezoidal shaped cavity under the effect of partial magnetic fields is carried out. Unsteady, dimensionless governing equations in stream function-vorticity formulation are approximated by radial basis functions (Rbfs) in space and the fourth order backward differentiation formula in time. Pseudo time derivative in stream function equation is also taken into account. Brinkman model for dynamic viscosity and Xue’s model for thermal conductivity are adopted. The pertinent observed parameters are Rayleigh number (\(10^4 \le Ra \le 10^6\)), Hartmann numbers (\(0\le Ha_1, Ha_2 \le 100\)), equally weighted concentration of nanoparticles (\(0 \le \phi _1, \phi _2 \le 0.01\)), tilt angle of oblique walls (\(0 \le \theta \le \pi /9 \)) and the lengths of the partial magnetic fields (\(0.5 \le \ell _{b_1}, \ell _{b_2} \le 1\)). The large area of impact region of partial magnetic field results in inhibition of fluid flow and heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Moukalled, M. Darwish, Numer. Heat Transf. Appl. Part A: Appl. 43, 543–563 (2003)

    ADS  Google Scholar 

  2. F. Moukalled, M. Darwish, Heat Transf. Eng. 25, 80–93 (2004)

    ADS  Google Scholar 

  3. E. Natajaran, T. Basak, S. Roy, Int. J. Heat Mass Trans. 51, 747–756 (2008)

    Google Scholar 

  4. T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Trans. 52, 2471–2483 (2009)

    Google Scholar 

  5. Y. Varol, Hakan F. Oztop, Ioan Pop, Int. J. Thermal Sci. 48, 1161–1175 (2009)

  6. Y. Varol, H.F. Oztop, I. Pop, Int. Commun. Heat Mass Trans. 37, 401–409 (2010)

    Google Scholar 

  7. K. Lasfer, M. Bouzaiane, T. Lili, Heat Transf. Eng. 31, 273–362 (2010)

    Google Scholar 

  8. A. Silva, E. Fontana, F. Marcondes, V.C. Mariani, Proceedings of ENCIT 2010, 13th Brazilian Congree of Thermal Sciences and Engineering, Uberlandia, MG, Brazil (2010)

  9. M. Hasanuzzaman, H.F. Oztop, M.M. Rahman, N.A. Rahim, R. Saidur, Y. Varol, Int. Commun. Heat Mass Trans. 39, 1384–1394 (2012)

    Google Scholar 

  10. M.S. Hossain, M.A. Alim, Int. J. Heat Mass Trans. 69, 327–336 (2014)

    Google Scholar 

  11. M.B. Uddin, M.M. Rahman, T.A. Ibrahim, Comput. Fluids 114, 284–296 (2015)

    MathSciNet  Google Scholar 

  12. M. Borhan Uddin, M. M. Rahman, Talaat A. Ibrahim, Alexandria Eng. J. 55, 1165–1176 (2016)

  13. K. Aparna, K.N. Seetharamu, Int. J. Heat Mass Transf. 108, 63–78 (2017)

    Google Scholar 

  14. M.M. Gholizadeh, R. Nikbakhti, Int. Robot. Autom. J. 4(3), 236–240 (2018)

    Google Scholar 

  15. M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Mech. Sci. 136, 493–502 (2018)

    Google Scholar 

  16. B.M.K. Gowda, M.S. Rajagopal, Aswatha, K.N. Seetharamu, Eng. Sci. Technol. Int. J. 22 153–167 (2019)

  17. K. Venkatadri, O. Anwar Beg, P. Rajarajeswari, V. Ramachandra Prasad, Int. J. Mech. Sci. 171, 105391 (2020)

    Google Scholar 

  18. R. Nasrin, S. Parvin, Int. Commun. Heat Mass Trans. 39, 270–274 (2012)

    Google Scholar 

  19. A.H. Mahmoudi, I. Pop, F. Talebi, Comput. Fluids 72, 46–62 (2013)

    MathSciNet  Google Scholar 

  20. O. Mahian, I. Pop, A.Z. Sahin, H.F. Oztop, S. Wongwises, Int. J. Heat Mass Transf. 64, 671–679 (2013)

    Google Scholar 

  21. M.H. Esfe, A.A.A. Arani, M. Rezaie, W.-M. Yan, A. Karimipour 66, 189–195 (2015)

  22. M.H. Esfe, A.A.A. Arani, W.-M. Yan, H. Ehteram, A. Aghaie, M. Afrand, Int. J. Heat Mass Trans. 92, 76–82 (2016)

    Google Scholar 

  23. N.A.C. Sidik, I.M. Adamu, M.M. Jamil, G.H.R. Kefayati, R. Mamat, G. Najafi, Int. Commun. Heat Mass Trans. 78, 68–79 (2016)

    Google Scholar 

  24. I.V. Miroshnichenko, M.A. Sheremet, K. Al-Salem, Int. J. Mech. Sci. 119, 294–302 (2016)

    Google Scholar 

  25. T. Javed, Z. Mehmood, I. Pop, J. Mol. Liq. 240, 402–411 (2017)

    Google Scholar 

  26. M.A. Sheremet, C. Revnic, I. Pop, Int. J. Mech. Sci. 133, 484–494 (2017)

    Google Scholar 

  27. M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Chem. Eng. Process. 125, 56–66 (2018). https://doi.org/10.1016/j.cep.2018.01.004

    Article  Google Scholar 

  28. S. Izadi, T. Armaghani, M. Molana, Powder Technol. 343, 880–907 (2019)

    Google Scholar 

  29. F. Selimefendigil, H.F. Oztop, Int. Commun. Heat Mass Trans. 95, 182–196 (2018)

    Google Scholar 

  30. F. Selimefendigil, Iranian J. Sci. Technol. Trans. Mech. Eng. 42, 169–184 (2018)

    Google Scholar 

  31. F. Selimefendigil, H.F. Oztop, Int. J. Mech. Sci. 136, 264–278 (2018)

    Google Scholar 

  32. M. Ghalambaz, M. Sabour, I. Pop, D. Wen, Int. J. Numer. Methods Heat Fluid Flow 29, 4349–4376 (2019). https://doi.org/10.1108/HFF-04-2019-0339

  33. M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, J. Therm. Anal. Calorim. 139, 2321–2336 (2020)

    Google Scholar 

  34. T. Tayebi, A.J. Chamkha, Int. J. Numer. Method Heat. 30(3), 1115–1136 (2020)

    Google Scholar 

  35. Z. Li, A. Shahsavar, K. Niazi, A.A.A.A. Al-Rashed, S. Rostami, Int. Commun. Heat Mass 115, 104628 (2020)

    Google Scholar 

  36. M. D. Massoudi, M. B. Ben Hamida, M. A. Almeshaal, K. Hajlaoui, Int. Commun. Heat Mass 126, 105468 (2021)

  37. P. Mondal, T.R. Mahapatra, Int. J. Mech. Sci. 208, 106665 (2021)

    Google Scholar 

  38. F. H. Ali, H. K. Hamzah, P. Talebizadeh Sardari, Int. J. Mech. Sci. 181 105688 (2020)

  39. Z. Mehmood, Int. Commun. Heat Mass 109, 104345 (2019)

    Google Scholar 

  40. Z.H. Khan, O.D. Makinde, W.A. Khan, J. Magn. Magn. Mater. 499, 166241 (2020)

    Google Scholar 

  41. Z.H. Khan, Waqar A. Khan, M. Hamid, Int. Commun. Heat Mass 116, 104640 (2020)

  42. A.J. Chamkha, F. Selimefendigil, H.F. Oztop, Nanomaterials 10, 449 (2020)

    Google Scholar 

  43. F. Selimefendigil, H.F. Oztop, J. Therm. Anal. Calorim. 143, 1485–1501 (2021)

    Google Scholar 

  44. F. Selimefendigil, A.J. Chamkha, J. Therm. Anal. Calorim. 143, 1467–1484 (2021)

    Google Scholar 

  45. R. Al-Sayegh, Int. J. Mech. Sci. 148, 756–765 (2018)

    Google Scholar 

  46. R. ul Haq, S. Aman, 128 401–417 (2018)

  47. S.K. Saha, Int. Commun. Heat Mass Transf. 114, 104593 (2020)

    Google Scholar 

  48. T. Islam, M.N. Alam, M.I. Asjad, Sci. Rep. 11, 10972 (2021)

    ADS  Google Scholar 

  49. A. Aghaei, H. Khorasanizadeh, G. A. Sheikzadeh, Eur. Phys. J. Plus 134 Article No 310 (2019)

  50. M.A. Qureshi, S. Hussain, M.A. Sadiq, Case Stud. Thermal Eng. 27, 101321 (2021)

    Google Scholar 

  51. H.C. Brinkman, J. Chem. Phys. 3, 571–581 (1952)

    ADS  Google Scholar 

  52. Q.Z. Xue, Phys. B 368, 302–307 (2005)

    ADS  Google Scholar 

  53. J.C. Maxwell-Garnett, Colors in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904)

    ADS  MATH  Google Scholar 

  54. G.E. Fasshauer, Meshfree Approximation Methods with Matlab (World Scientific Publications, Singapore, 2007)

    MATH  Google Scholar 

  55. G.E. Fasshauer, M. McCourt, Kernel-based Approximation Methods using MATLAB (World Scientific Publications, Singapore, 2015)

    MATH  Google Scholar 

  56. Md. Mamun-Ur-Rashid Khan, M.R. Hossain, S. Parvin, Am. J. Appl. Math., 5(2), 48–56 (2017)

  57. N. Quertatani, N. Ben Cheikh, B. Ben Beya, T. Lili, C.R. Mecanique 336, 464–470 (2008)

  58. B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50, 1748–1756 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengisen Pekmen Geridonmez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geridonmez, B.P., Oztop, H.F. Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity. Eur. Phys. J. Spec. Top. 231, 2761–2771 (2022). https://doi.org/10.1140/epjs/s11734-022-00600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00600-y

Navigation