Skip to main content

Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity

Multiple partial MHD effect on Ag-MgO/H\(_2\)O nanofluid flow in a trapezoidal shaped cavity

Abstract

In this paper, a numerical investigation on natural convection flow of silver(Ag)-magnesium oxide(MgO)-water hybrid nanofluid in a trapezoidal shaped cavity under the effect of partial magnetic fields is carried out. Unsteady, dimensionless governing equations in stream function-vorticity formulation are approximated by radial basis functions (Rbfs) in space and the fourth order backward differentiation formula in time. Pseudo time derivative in stream function equation is also taken into account. Brinkman model for dynamic viscosity and Xue’s model for thermal conductivity are adopted. The pertinent observed parameters are Rayleigh number (\(10^4 \le Ra \le 10^6\)), Hartmann numbers (\(0\le Ha_1, Ha_2 \le 100\)), equally weighted concentration of nanoparticles (\(0 \le \phi _1, \phi _2 \le 0.01\)), tilt angle of oblique walls (\(0 \le \theta \le \pi /9 \)) and the lengths of the partial magnetic fields (\(0.5 \le \ell _{b_1}, \ell _{b_2} \le 1\)). The large area of impact region of partial magnetic field results in inhibition of fluid flow and heat transfer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. F. Moukalled, M. Darwish, Numer. Heat Transf. Appl. Part A: Appl. 43, 543–563 (2003)

    ADS  Article  Google Scholar 

  2. F. Moukalled, M. Darwish, Heat Transf. Eng. 25, 80–93 (2004)

    ADS  Article  Google Scholar 

  3. E. Natajaran, T. Basak, S. Roy, Int. J. Heat Mass Trans. 51, 747–756 (2008)

    Article  Google Scholar 

  4. T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Trans. 52, 2471–2483 (2009)

    Article  Google Scholar 

  5. Y. Varol, Hakan F. Oztop, Ioan Pop, Int. J. Thermal Sci. 48, 1161–1175 (2009)

  6. Y. Varol, H.F. Oztop, I. Pop, Int. Commun. Heat Mass Trans. 37, 401–409 (2010)

    Article  Google Scholar 

  7. K. Lasfer, M. Bouzaiane, T. Lili, Heat Transf. Eng. 31, 273–362 (2010)

    Article  Google Scholar 

  8. A. Silva, E. Fontana, F. Marcondes, V.C. Mariani, Proceedings of ENCIT 2010, 13th Brazilian Congree of Thermal Sciences and Engineering, Uberlandia, MG, Brazil (2010)

  9. M. Hasanuzzaman, H.F. Oztop, M.M. Rahman, N.A. Rahim, R. Saidur, Y. Varol, Int. Commun. Heat Mass Trans. 39, 1384–1394 (2012)

    Article  Google Scholar 

  10. M.S. Hossain, M.A. Alim, Int. J. Heat Mass Trans. 69, 327–336 (2014)

    Article  Google Scholar 

  11. M.B. Uddin, M.M. Rahman, T.A. Ibrahim, Comput. Fluids 114, 284–296 (2015)

    MathSciNet  Article  Google Scholar 

  12. M. Borhan Uddin, M. M. Rahman, Talaat A. Ibrahim, Alexandria Eng. J. 55, 1165–1176 (2016)

  13. K. Aparna, K.N. Seetharamu, Int. J. Heat Mass Transf. 108, 63–78 (2017)

    Article  Google Scholar 

  14. M.M. Gholizadeh, R. Nikbakhti, Int. Robot. Autom. J. 4(3), 236–240 (2018)

    Google Scholar 

  15. M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Mech. Sci. 136, 493–502 (2018)

    Article  Google Scholar 

  16. B.M.K. Gowda, M.S. Rajagopal, Aswatha, K.N. Seetharamu, Eng. Sci. Technol. Int. J. 22 153–167 (2019)

  17. K. Venkatadri, O. Anwar Beg, P. Rajarajeswari, V. Ramachandra Prasad, Int. J. Mech. Sci. 171, 105391 (2020)

    Article  Google Scholar 

  18. R. Nasrin, S. Parvin, Int. Commun. Heat Mass Trans. 39, 270–274 (2012)

    Article  Google Scholar 

  19. A.H. Mahmoudi, I. Pop, F. Talebi, Comput. Fluids 72, 46–62 (2013)

    MathSciNet  Article  Google Scholar 

  20. O. Mahian, I. Pop, A.Z. Sahin, H.F. Oztop, S. Wongwises, Int. J. Heat Mass Transf. 64, 671–679 (2013)

    Article  Google Scholar 

  21. M.H. Esfe, A.A.A. Arani, M. Rezaie, W.-M. Yan, A. Karimipour 66, 189–195 (2015)

  22. M.H. Esfe, A.A.A. Arani, W.-M. Yan, H. Ehteram, A. Aghaie, M. Afrand, Int. J. Heat Mass Trans. 92, 76–82 (2016)

    Article  Google Scholar 

  23. N.A.C. Sidik, I.M. Adamu, M.M. Jamil, G.H.R. Kefayati, R. Mamat, G. Najafi, Int. Commun. Heat Mass Trans. 78, 68–79 (2016)

    Article  Google Scholar 

  24. I.V. Miroshnichenko, M.A. Sheremet, K. Al-Salem, Int. J. Mech. Sci. 119, 294–302 (2016)

    Article  Google Scholar 

  25. T. Javed, Z. Mehmood, I. Pop, J. Mol. Liq. 240, 402–411 (2017)

    Article  Google Scholar 

  26. M.A. Sheremet, C. Revnic, I. Pop, Int. J. Mech. Sci. 133, 484–494 (2017)

    Article  Google Scholar 

  27. M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Chem. Eng. Process. 125, 56–66 (2018). https://doi.org/10.1016/j.cep.2018.01.004

    Article  Google Scholar 

  28. S. Izadi, T. Armaghani, M. Molana, Powder Technol. 343, 880–907 (2019)

    Article  Google Scholar 

  29. F. Selimefendigil, H.F. Oztop, Int. Commun. Heat Mass Trans. 95, 182–196 (2018)

    Article  Google Scholar 

  30. F. Selimefendigil, Iranian J. Sci. Technol. Trans. Mech. Eng. 42, 169–184 (2018)

    Article  Google Scholar 

  31. F. Selimefendigil, H.F. Oztop, Int. J. Mech. Sci. 136, 264–278 (2018)

    Article  Google Scholar 

  32. M. Ghalambaz, M. Sabour, I. Pop, D. Wen, Int. J. Numer. Methods Heat Fluid Flow 29, 4349–4376 (2019). https://doi.org/10.1108/HFF-04-2019-0339

  33. M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, J. Therm. Anal. Calorim. 139, 2321–2336 (2020)

    Article  Google Scholar 

  34. T. Tayebi, A.J. Chamkha, Int. J. Numer. Method Heat. 30(3), 1115–1136 (2020)

    Article  Google Scholar 

  35. Z. Li, A. Shahsavar, K. Niazi, A.A.A.A. Al-Rashed, S. Rostami, Int. Commun. Heat Mass 115, 104628 (2020)

    Article  Google Scholar 

  36. M. D. Massoudi, M. B. Ben Hamida, M. A. Almeshaal, K. Hajlaoui, Int. Commun. Heat Mass 126, 105468 (2021)

  37. P. Mondal, T.R. Mahapatra, Int. J. Mech. Sci. 208, 106665 (2021)

    Article  Google Scholar 

  38. F. H. Ali, H. K. Hamzah, P. Talebizadeh Sardari, Int. J. Mech. Sci. 181 105688 (2020)

  39. Z. Mehmood, Int. Commun. Heat Mass 109, 104345 (2019)

    Article  Google Scholar 

  40. Z.H. Khan, O.D. Makinde, W.A. Khan, J. Magn. Magn. Mater. 499, 166241 (2020)

    Article  Google Scholar 

  41. Z.H. Khan, Waqar A. Khan, M. Hamid, Int. Commun. Heat Mass 116, 104640 (2020)

  42. A.J. Chamkha, F. Selimefendigil, H.F. Oztop, Nanomaterials 10, 449 (2020)

    Article  Google Scholar 

  43. F. Selimefendigil, H.F. Oztop, J. Therm. Anal. Calorim. 143, 1485–1501 (2021)

    Article  Google Scholar 

  44. F. Selimefendigil, A.J. Chamkha, J. Therm. Anal. Calorim. 143, 1467–1484 (2021)

    Article  Google Scholar 

  45. R. Al-Sayegh, Int. J. Mech. Sci. 148, 756–765 (2018)

    Article  Google Scholar 

  46. R. ul Haq, S. Aman, 128 401–417 (2018)

  47. S.K. Saha, Int. Commun. Heat Mass Transf. 114, 104593 (2020)

    Article  Google Scholar 

  48. T. Islam, M.N. Alam, M.I. Asjad, Sci. Rep. 11, 10972 (2021)

    ADS  Article  Google Scholar 

  49. A. Aghaei, H. Khorasanizadeh, G. A. Sheikzadeh, Eur. Phys. J. Plus 134 Article No 310 (2019)

  50. M.A. Qureshi, S. Hussain, M.A. Sadiq, Case Stud. Thermal Eng. 27, 101321 (2021)

    Article  Google Scholar 

  51. H.C. Brinkman, J. Chem. Phys. 3, 571–581 (1952)

    ADS  Article  Google Scholar 

  52. Q.Z. Xue, Phys. B 368, 302–307 (2005)

    ADS  Article  Google Scholar 

  53. J.C. Maxwell-Garnett, Colors in metal glasses and in metallic films. Philos. Trans. R. Soc. A 203, 385–420 (1904)

    ADS  MATH  Google Scholar 

  54. G.E. Fasshauer, Meshfree Approximation Methods with Matlab (World Scientific Publications, Singapore, 2007)

    MATH  Book  Google Scholar 

  55. G.E. Fasshauer, M. McCourt, Kernel-based Approximation Methods using MATLAB (World Scientific Publications, Singapore, 2015)

    MATH  Book  Google Scholar 

  56. Md. Mamun-Ur-Rashid Khan, M.R. Hossain, S. Parvin, Am. J. Appl. Math., 5(2), 48–56 (2017)

  57. N. Quertatani, N. Ben Cheikh, B. Ben Beya, T. Lili, C.R. Mecanique 336, 464–470 (2008)

  58. B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50, 1748–1756 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengisen Pekmen Geridonmez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geridonmez, B.P., Oztop, H.F. Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00600-y