Skip to main content

The effect of fins and wavy geometry on natural convection heat transfer of \(\hbox {TiO}_{{2}}\)–water nanofluid in trash bin-shaped cavity

Abstract

This paper studies the effect of fins number and size and wavy wall of a trash bin-shaped cavity on the natural convection heat transfer (NC) of a \(\hbox {TiO}_{2}\)–water nanofluid. The flow is considered buoyancy driven, which is under thermal radiation. The effects of Rayleigh number (\(10^{3}-10^{5})\), thermal radiation (0.1\(-\)0.3), nanoparticle concentration (0.02\(-\)0.04), and geometry are investigated. Non-dimensional mode of NS equations would be governing equations, and the finite element technique is utilized to discrete them. Two plans are examined: firstly, the effects of thermal parameters on the enclosure with no fin are studied. Secondly, the effects of the fins length and number, and also the wavy geometry on Nusselt number (Nu) and flow distribution are investigated. The findings of the present paper are that increasing the fin number around the inner cylinder increases \(\hbox {Nu}_{\mathrm{avg}}\) up to 54%, and reduces the local entropy generation (EG) and enhances the Bejan number. Moreover, if the wavy wall amplitude changes from 0.05 to 0.1, \(\hbox {Nu}_{\mathrm{avg}}\) reduces by 31%, and if the Ra changes from \(10^{3}\) to \(10^{5}\), \(\hbox {Nu}_{\mathrm{avg}}\) increases up to 36%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

\(\psi \) :

Stream function

Nu:

Nusselt number

\(\rho \) :

Density

\(\mu \) :

Dynamic viscosity

\(\beta \) :

Volume expansion coefficient

\({\mathrm{Pr}}\) :

Prandtl number

\(\phi \) :

Nanoparticle volume fraction

T :

Temperature

S :

Entropy generation

Rd:

Radiation parameter

Ra:

Rayleigh number

L :

Length of cavity

nf:

Nanofluid

c :

Cold

loc.:

Local

ave.:

Average

References

  1. S.U.S Choi, J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congress Expos. 66, 99–105 (1995)

  2. B. Durand-Estebe, C. Le Bot, E. Arquis, Validation of turbulent natural convection in a square cavity for application of CFD modeling to heat transfer and fluid flow in a data center. In Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, July 2–4, 2012, Nantes, France (2012)

  3. H.A. Richmond, K.G.T. Hollands, Numerical solution of an open cavity, natural convection heat exchanger. J. Heat Transfer 111(1), 80–85 (1989)

    Article  Google Scholar 

  4. B.M. Krishne Gowda, M.S. Rajagopal, Aswatha, K.N. Seetharamu. Heat transfer in a side heated trapezoidal cavity with openings. Eng. Sci. Technol. Int. J. 22, 153–167 (2018)

  5. M.G. Parent, T.H. Van der Meer, K.G.T. Hollands, Natural convection heat exchangers in solar water heating systems: theory and experiment. Sol. Energy 45, 43–52 (1990)

    ADS  Article  Google Scholar 

  6. M.M. Sarafraz, I. Zhe Tian, S.K. Tlili, M. Goodarzi, Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J. Therm. Anal. Calorim. 139(4), 2435–2445 (2020)

    Article  Google Scholar 

  7. H.R. Goshayeshi, M.R. Safaei, M. Goodarzi, M. Dahari, Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 301, 1218–1226 (2016)

    Article  Google Scholar 

  8. H.F. Oztop, M.A. Almeshaal, L. Kolsi, M.M. Rashidi, M.E. Ali. Natural convection and irreversibility evaluation in a cubic cavity with partial opening in both top and bottom sides. Entropy 21(2), 1–16 (2019)

  9. D.S. Loenko, A. Shenoy, M.A. Sheremet, Natural convection of non-Newtonian power-law fluid in a square cavity with a heat-generating element. Energies 12(11), 2149 (2019)

  10. H. Salehipour, S. Emadi, S. Tayebikhorami, M.A. Shahmohammadi, A semi-analytical solution for dynamic stability analysis of nanocomposite/fibre-reinforced doubly-curved panels resting on the elastic foundation in thermal environment. Eur. Phys. J. Plus 137(1), 1–36 (2022)

    Article  Google Scholar 

  11. M.A. Shahmohammadi, S.M. Mirfatah, S. Emadi, H. Salehipour, Ö. Civalek, Nonlinear thermo-mechanical static analysis of toroidal shells made of nanocomposite/fiber reinforced composite plies surrounded by elastic medium. Thin-Walled Struct. 170, 108616 (2022)

    Article  Google Scholar 

  12. H.R. Ashorynejad, B. Hoseinpour, Investigation of different nanofluids effect on entropy generation on natural convection in a porous cavity. Eur. J. Mech, B/Fluids 62, 86–93 (2016)

  13. S.C. Saha, Scaling of free convection heat transfer in a triangular cavity for \(\text{ Pr } >1\). Energy Build 43(10), 2908–17 (2011)

    Article  Google Scholar 

  14. H. Saleh, R. Roslan, I. Hashim, Natural convection heat transfer in a nanofluid filled trapezoidal enclosure. Int. J. Heat Mass Transf. 54, 194–201 (2011)

    Article  Google Scholar 

  15. M. Bahiraei, M. Jamshidmofid, M. Goodarzi, Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J. Mol. Liq. 273, 88–98 (2019)

    Article  Google Scholar 

  16. Q. Sun, I. Pop, Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int. J. Therm. Sci. 50(11), 2141–2153 (2011)

    Article  Google Scholar 

  17. H.R. Ashorynejad, B. Hoseinpour, Investigation of different nanofluids effect on entropy generation on natural convection in a porous cavity. Eur. J. Mech, B/Fluids (2016)

  18. S. Eshaghi, F. Izadpanah, A.S. Dogonchi, A.J. Chamkha, M.B.B. Hamida, H. Alhumade, The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall. Case Stud. Therm. Eng. 28, 101541 (2021)

    Article  Google Scholar 

  19. M.H. Bahmani, G. Sheikhzadeh, M. Zarringhalam, O.A. Akbari, A.A.A.A. Alrashed, G.A.S. Shabani, M. Goodarzi, Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv. Powder Technol. 29(2), 273–282 (2018)

    Article  Google Scholar 

  20. M. Hatami, Numerical study of nanofluids natural convection in a rectangular cavity including heated fins. J. Mol. Liq. 233, 1–8 (2017)

    Article  Google Scholar 

  21. S. Abdelkaber, R. Mebrouk, B. Abdellah, B. Khadidja, Natural convection in a Horizontal Wavy Enclosure. J. Appl. Sci. 7, 334–341 (2007)

    ADS  Article  Google Scholar 

  22. M.T. Nguyen, M.A. Abdelraheem, S.W. Lee, Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method. Num. Heat Transf. Part A: Appl. 72(1), 68–88 (2017). https://doi.org/10.1080/10407782.2017.1353385

    ADS  Article  Google Scholar 

  23. M. Waqas, T. Hayat, A. Alsaedi, A theoretical analysis of SWCNT-MWCNT and H 2 O nanofluids considering Darcy-Forchheimer relation. Appl. Nanosci. 9(5), 1183–1191 (2019)

    ADS  Article  Google Scholar 

  24. P.S. Rao, P. Barman, Natural convection in a wavy porous cavity subjected to a partial heat source. Int. Commun. Heat Mass Transf. 120, 105007 (2021)

    Article  Google Scholar 

  25. A.S. Dogonchi, A.J. Chamkha, D.D. Ganji, A numerical investigation of magneto-hydrodynamic natural convection of Cu-water nanofluid in a wavy cavity using CVFEM. J. Therm. Anal. Calorim. 135(4), 2599–2611 (2019)

    Article  Google Scholar 

  26. A.S. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas, S.M. Seyyedi, I.L. Animasaun, D.D. Ganji, The influence of different shapes of nanoparticle on Cu-H\(_2\)O nanofluids in a partially heated irregular wavy enclosure. Physica A 540, 123034 (2020)

    MathSciNet  Article  Google Scholar 

  27. S.M. Seyyedi, A.S. Dogonchi, M. Hashemi-Tilehnoee, Z. Asghar, M. Waqas, D.D. Ganji, A computational framework for natural convective hydromagnetic flow via inclined cavity: an analysis subjected to entropy generation. J. Mol. Liq. 287, 110863 (2019)

    Article  Google Scholar 

  28. M. Waqas, S. Jabeen, T. Hayat, S.A. Shehzad, A. Alsaedi, Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int. Commun. Heat Mass Transfer 112, 104401 (2020)

    Article  Google Scholar 

  29. S.M. Seyyedi, A.S. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas, D.D. Ganji, Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. Int. Commun. Heat Mass Transfer 110, 104398 (2020)

    Article  Google Scholar 

  30. M. Waqas, A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface. Int. Commun. Heat Mass Transfer 126, 105262 (2021)

    Article  Google Scholar 

  31. M. Waqas, Z. Asghar, W. A. Khan, Thermo-solutal Robin conditions significance in thermally radiative nanofluid under stratification and magnetohydrodynamics. Eur. Phys. J. Special Topics 230, 1307–1316 (2021)

  32. M. Waqas, Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder. Int. J. Num. Methods Heat Fluid Flow 29(4), 2193–2205 (2019)

  33. A.M. Aly, Z.A.S. Raizah, S.E. Ahmed, ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium. Eur. Phys. J. Special Topics 230, 1173–1183 (2021)

  34. S.P. Samrat, M. Girinath Reddy, N. Sandeep, Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian moment and thermophoresis. Eur. Phys. J. Special Topics 230, 1273–1281 (2021)

  35. S.E. Ahmed, Z.A.S. Raizah, A.M. Aly, Three-dimensional flow of a power-law nanofluid within a cubic domain filled with a heat-generating and 3D-heterogeneous porous medium. Eur. Phys. J. Special Topics 230, 1185–1199 (2021)

    ADS  Article  Google Scholar 

  36. S. Feng, M. Shi, H. Yan, S. Sun, F. Li, L. Tian Jian, Natural convection in a cross-fin heat sink. Appl. Therm. Eng. 132, 30–37 (2018)

    Article  Google Scholar 

  37. H. Saleh, I. Hashim, E. Jamesahar, M. Ghalambaz, Effects of flexible fin on natural convection in enclosure partially-filled with porous medium. Alexandria Eng. J. 59, 3515–3529 (2020)

  38. M. Fayz-Al-Asad, M.J.H. Munshi, M.M.A. Sarker, Effect of fin length and location on natural convection heat transfer in a wavy cavity. Int. J. Thermo-fluid Sci. Technol. 7(3), 070303 (2020)

    Google Scholar 

  39. Y. Khetib, A.A. Alahmadi, A. Alzaed, H. Azimy, M. Sharifpur, G. Cheraghian, Effect of straight, inclined and curved fins on natural convection and entropy generation of a nanofluid in a square cavity influenced by a magnetic field. Processes 9(8), 1339 (2021)

    Article  Google Scholar 

  40. K. Al-Farhany, M.F. Al-dawody, D.A. Hamzah, W. Al-Kouz, Z. Said, Numerical investigation of natural convection on Al\(_2\)O\(_3\)–water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects. Appl. Nanosci. 10, 1–18 (2021)

  41. N.A. Jabbar, S. Abdul Hussein, K. Al-Chlaihawi, Q. Al-anssari, L. Al-Ansari, CFD analysis of natural convection in a square cavity with two thin baffles of different lengths and positions on the vertical opposite walls. J. Mech. Eng. Res. Dev. 43(3), 174–185 (2020)

    Google Scholar 

  42. L. Wang, W. Wang, Y. Cai, D. Liu, F. Zhao, Effects of porous fins on mixed convection and heat transfer mechanics in lid-driven cavities: full numerical modeling and parametric simulations. Transport Porous Media 132, 495–534 (2020)

  43. T. Tayebi, H.F. Öztop, A.J. Chamkha, Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Therm. Sci. Eng. Progress 19, 100605 (2020)

  44. Z. Li, A.K. Hussein, O. Younisd, M. Afrand, S. Feng, Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int. Commun. Heat Mass Transf. 116(4),104650 (2020)

  45. A. Alsabery, I. Hashim, A. Hajjar, M. Ghalambaz, S. Nadeem, P.M. Saffari, Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies (2020). https://doi.org/10.3390/en13112942

    Article  Google Scholar 

  46. R.D.C. Oliveski, M.H. Macagnan, J.B. Copetti, Entropy generation and natural convection in rectangular cavities. Appl. Therm. Eng. 29, 1417–1425 (2009)

    Article  Google Scholar 

  47. A.I. Alsabery, T. Tayebi, A.J. Chamkha, I. Hashim, Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below. Int. Commun. Heat Mass Transf. 95, 197–209 (2018)

    Article  Google Scholar 

  48. F. Selimefendigil, H.F. Öztop, Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. Phys. A Stat. Mech. Appl. 540, 123004 (2020)

    MathSciNet  Article  Google Scholar 

  49. A. Chamkha, M.A. Mansour, A.M. Rashad, H. Kargarsharifiabad, T. Armaghani, Magneto-hydrodynamic mixed convection and entropy analysis of nanofluid in gamma-shaped porous cavity. J. Thermophys. Heat Transf. 34(4), 836–847 (2020)

  50. M. Hashemi-Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, A.J. Chamkha, D. D. Ganji, Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. J. Therm. Anal. Calorim. 141, 2033–2045 (2020)

  51. M. Hashemi-Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, M. Sharifpur, Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels. J. Energy Storage 31, 101720 (2020)

    Article  Google Scholar 

  52. S.M. Seyyedi, A.S. Dogonchi, D.D. Ganji, M. Hashemi-Tilehnoee, Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J. Therm. Anal. Calorim. 138(2), 1607–1621 (2019)

    Article  Google Scholar 

  53. S. Shaw, A.S. Dogonchi, M.K. Nayak, O.D. Makinde, Impact of entropy generation and nonlinear thermal radiation on Darcy-Forchheimer flow of MnFe\(_2\)O\(_4\)-Casson/water nanofluid due to a rotating disk: application to brain dynamics. Arab. J. Sci. Eng. 45(7), 5471–5490 (2020)

    Article  Google Scholar 

  54. S.M. Seyyedi, A.S. Dogonchi, M. Hashemi-Tilehnoee, D.D. Ganji, A.J. Chamkha, Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure. Int. J. Num. Methods Heat Fluid Flow 30(11), 4811–4836 (2020)

  55. S.M. Seyyedi, A.S. Dogonchi, R. Nuraei, D.D. Ganji, M. Hashemi-Tilehnoee, Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field. Eur. Phys. J. Plus 134(6), 1–20 (2019)

    Article  Google Scholar 

  56. A.S. Dogonchi, M.S. Sadeghi, M. Ghodrat, A.J. Chamkha, Y. Elmasry, R. Alsulami, Natural convection and entropy generation of a nano-liquid in a crown wavy cavity: effect of thermo-physical parameters and cavity shape. Case Stud. Thermal Eng. 27, 101208 (2021)

    Article  Google Scholar 

  57. M.S. Sadeghi, T. Tayebi, A.S. Dogonchi, M.K. Nayak, M. Waqas, Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid-filled wavy enclosure furnished with two circular cylinders. Int. Commun. Heat Mass Transf. 120, 104951 (2021)

  58. M. S. Sadeghi, A.S. Dogonchi, M. Ghodrat, A.J. Chamkha, H. Alhumade, N. Karimi, Natural convection of CuO-water nanofluid in a conventional oil/water separator cavity: application to combined-cycle power plants. J. Taiwan Inst. Chem. Eng. 124, 307–319 (2021)

  59. P. Gokulavani, M. Muthtamilselvan, B. Abdalla, Impact of injection/suction and entropy generation of the porous open cavity with the hybrid nanofluid. J. Thermal Anal. Calorim. 147, 3299–3312 (2021)

  60. S.M. Seyyedi, On the entropy generation for a porous enclosure subject to a magnetic field: different orientations of cardioid geometry. Int. Commun. Heat Mass Transf. 116, 104712 (2020)

    Article  Google Scholar 

  61. M. Hatami, L. Sun, D. Jing, H. Günerhan, P.K. Kameswaran, Rotating cylinder turbulator effect on the heat transfer of a nanofluid flow in a wavy divergent channel. J. Appl. Comput. Mech. 7(4), 1987–1998 (2021)

    Google Scholar 

  62. M. Usman, Z.H. Khan, M.B. Liu, MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Physica A 535, 122443 (2019)

    MathSciNet  Article  Google Scholar 

  63. M.S. Sadeghi, T. Tayebi, A.S. Dogonchi, T. Armaghani, P. Talebizadehsardari, Analysis of hydrothermal characteristics of magnetic Al\(_2\)O\(_3\)-H\(_2\)O nanofluid within a novel wavy enclosure during natural convection process considering internal heat generation. Math. Methods Appl. Sci. 10, 1–13 (2020)

  64. M. Paroncini, F. Corvaro, Natural convection in a square enclosure with a hot source. Int. J. Therm. Sci. 48(9), 1683–1695 (2009)

    Article  Google Scholar 

  65. A.M. Aly, A. Al-Hanaya, Z. Raizah, The magnetic power on natural convection of NEPCM suspended in a porous annulus between a hexagonal-shaped cavity and dual curves. Case Stud. Therm. Eng. 28, 101354 (2021)

  66. H.F. Oztop, E. Abu-Nada, Y. Varol, A. Chamkha, Natural convection in wavy enclosures with volumetric heat sources. Int. J. Therm. Sci. 50(4), 502–514 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Fereidooni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fereidooni, J. The effect of fins and wavy geometry on natural convection heat transfer of \(\hbox {TiO}_{{2}}\)–water nanofluid in trash bin-shaped cavity. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00590-x