J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)
MATH
Google Scholar
R. Moreau, Magnetohydrodynamics. Kluwer Academic. 3, 30 (1990)
MathSciNet
Google Scholar
M. Ghalambaz, S. Mehryan, E. Izadpanahi, A.J. Chamkha, D. Wen, MHD natural convection of Cu-Al 2 O 3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–43 (2019)
Article
Google Scholar
S. Mehryan, M. Izadi, A.J. Chamkha, M.A. Sheremet, Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J. Mol. Liq. 263, 510–25 (2018)
Article
Google Scholar
A. Metzner, R. Otto, Agitation of non-Newtonian fluids. AIChE J. 3, 3–10 (1957)
Article
Google Scholar
W. Aftab, X. Huang, R. Zou, The Application of Carbon Materials in Latent Heat Thermal Energy Storage (LHTES). Thermal Transport in Carbon-Based Nanomaterials (Elsevier, Amsterdam, 2017), pp. 243–65
Book
Google Scholar
W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou, Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 14, 4268–91 (2021)
Article
Google Scholar
M. Yousaf, U. Naseer, Y. Li, Z. Ali, N. Mahmood, L. Wang et al., A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ. Sci. 14, 2670–707 (2021)
Article
Google Scholar
M. Hamid, M. Usman, Z. Khan, R.U. Haq, W. Wang, Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. Eur. Phys. J. Plus 133, 527 (2018)
Article
Google Scholar
M. Hamid, T. Zubair, M. Usman, Z.H. Khan, W. Wang, Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid. J. Comput. Des. Eng. 6, 584–92 (2019)
Google Scholar
Z. Khan, M. Usman, T. Zubair, M. Hamid, R. Haq, Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring-Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 125005 (2020)
ADS
MathSciNet
Article
Google Scholar
M. Usman, T. Zubair, M. Hamid, R.U. Haq, Z.H. Khan. Unsteady flow and heat transfer of tangent-hyperbolic fluid: Legendre wavelet-based analysis. Heat Trans. 50(4), 3079–3093 (2021)
A. Wakif, I.L. Animasaun, P.S. Narayana, G. Sarojamma, Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020)
M.U. Ashraf, M. Qasim, A. Wakif, M.I. Afridi, I.L. Animasaun. A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: a physiological application. Numer. Methods Partial Diff. Equ. 38(3), 666–692 (2022)
A. Wakif, Z. Boulahia, F. Ali, M.R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu-water nanofluids. Int. J. Appl. Comput. Math. 4, 81 (2018)
MathSciNet
Article
Google Scholar
I. Pop, M. Sheremet, Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation. Int. J. Numer. Methods Heat Fluid Flow 27(10), 2318–2332 (2017). https://doi.org/10.1108/HFF-09-2016-0352
M. Hamid, M. Usman, Z. Khan, R. Haq, W. Wang, Heat transfer and flow analysis of Casson fluid enclosed in a partially heated trapezoidal cavity. Int. Commun. Heat Mass Transf. 108, 104284 (2019)
Article
Google Scholar
Z.H. Khan, W.A. Khan, M. Hamid, Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity. J. Thermal Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-09201-9
Article
Google Scholar
M. Aneja, A. Chandra, S. Sharma, Natural convection in a partially heated porous cavity to Casson fluid. Int. Commun. Heat Mass Transf. 114, 104555 (2020)
Article
Google Scholar
K.U. Rehman, M. Malik, Q.M. Al-Mdallal, W. Al-Kouz, Heat transfer analysis on buoyantly convective non-Newtonian stream in a hexagonal enclosure rooted with T-Shaped flipper: hybrid meshed analysis. Case Studies Therm. Eng. 21, 100725 (2020)
Article
Google Scholar
W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, R. Zou, Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11, 1392–424 (2018)
Article
Google Scholar
W. Aftab, A. Mahmood, W. Guo, M. Yousaf, H. Tabassum, X. Huang et al., Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 20, 401–9 (2019)
Article
Google Scholar
A. Wakif, Z. Boulahia, R. Sehaqui, A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. 9, 1438–54 (2018)
ADS
Article
Google Scholar
A. Wakif, Z. Boulahia, R. Sehaqui, Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 7, 2134–52 (2017)
ADS
Article
Google Scholar
M. Zaydan, A. Wakif, I. Animasaun, U. Khan, D. Baleanu, R. Sehaqui, Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno’s nanofluid model. Case Stud. Thermal Eng. 22, 100726 (2020)
Article
Google Scholar
A. Wakif, A. Chamkha, T. Thumma, I. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J. Thermal Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09488-z
Article
Google Scholar
M. Yousaf, U. Naseer, Y. Li, Z. Ali, N. Mahmood, L. Wang et al., A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ. Sci. 14, 2670–707 (2021)
Article
Google Scholar
B. Calcagni, F. Marsili, M. Paroncini, Natural convective heat transfer in square enclosures heated from below. Appl. Thermal Eng. 25, 2522–31 (2005)
Article
Google Scholar
Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical study of natural and mixed convection in a square cavity filled by a Cu-water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 502 (2017)
Article
Google Scholar
A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani et al., Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Phys. E 91, 15–31 (2017)
Article
Google Scholar
T. Tayebi, A.J. Chamkha, Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-04-2019-0350
Article
Google Scholar
F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech. Sci. 124, 95–108 (2017)
Article
Google Scholar
R.U. Haq, F.A. Soomro, H.F. Öztop, T. Mekkaoui, Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. Int. J. Heat Mass Transf. 131, 724–36 (2019)
Article
Google Scholar
M.J. Uddin, A.F. Hoque, Convective heat transfer flow of nanofluid in an isosceles triangular shaped enclosure with an uneven bottom wall. Chem. Eng. Trans. 66, 403-8 (2018)
Google Scholar
N.S. Bondareva, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Free convection in an open triangular cavity filled with a nanofluid under the effects of Brownian diffusion, thermophoresis and local heater. J. Heat Transf. (2018). https://doi.org/10.1115/1.4038192
Article
Google Scholar
A. Dogonchi, M.A. Ismael, A.J. Chamkha, D. Ganji, Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall. J. Thermal Anal. Calorim. 135, 3485–97 (2019)
Article
Google Scholar
A.S. Dogonchi, M.A. Sheremet, I. Pop, D.D. Ganji, MHD natural convection of Cu/H\(_{2}\)O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int. J. Numer. Methods Heat Fluid Flow 28(12), 2979–2996 (2018). https://doi.org/10.1108/HFF-04-2018-0160
K.M. Gangawane, H.F. Oztop, N. Abu-Hamdeh, Mixed convection characteristic in a lid-driven cavity containing heated triangular block: Effect of location and size of block. Int. J. Heat Mass Transf. 124, 860–875 (2018)
M. Usman, M. Hamid, Z.H. Khan, R. Ul Haq, W.A. Khan, Finite element analysis of water-based Ferrofluid flow in a partially heated triangular cavity. Int. J. Numer. Methods Heat Fluid Flow 31(10), 3132–3147 (2021). https://doi.org/10.1108/HFF-12-2019-0930
C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)
MathSciNet
Article
Google Scholar
P. Dechaumphai, Finite Element Method in Engineering (Chulalongkorn University Press, Bangkok, 1999)
Google Scholar
L.J. Khaled-Abad, R. Salehi, Numerical and theoretical study of weak Galerkin finite element solutions of Turing patterns in reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 37, 302–40 (2020)
MathSciNet
Article
Google Scholar
Z. Khan, W. Khan, M. Hamid, H. Liu, Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid-driven square cavity with Y-shaped obstacle. Phys. Fluids 32, 093609 (2020)
ADS
Article
Google Scholar
M. Hamid, Z. Khan, W. Khan, R. Haq, Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle. Phys. Fluids 31, 103607 (2019)
ADS
Article
Google Scholar