Skip to main content

Thermal treatment inside a partially heated triangular cavity filled with casson fluid with an inner cylindrical obstacle via FEM approach


A comprehensive numerical study is presented for the hydromagnetic flow and heat transfer of Casson fluid in an enclosed partially heated triangular cavity. A cylindrical obstacle is placed with different thermal boundary conditions inside the cavity. The governing partial differential equations are converted to a non-dimensional form via suitable similarity variables. Well-known finite element method (FEM) is employed to solve the governing equations and investigate the impact of various physical parameters like the length of the heating element, Casson and radiation parameters, and the Hartmann number on the streamlines, isotherms, and local Nusselt numbers. Simulations are performed for the three selected (cold, adiabatic, and heated) conditions of an inner cylindrical obstacle. It is demonstrated that the maximum Nusselt number ensues near the edges of the heating element and the Casson parameter tends to reduce the Nusselt number. It is also found that the length of the heating element has substantial effects on the heat transfer in the cavity. The new results of this study may help to study the thermal control and non-Newtonian fluids inside closed enclosures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)

    MATH  Google Scholar 

  2. R. Moreau, Magnetohydrodynamics. Kluwer Academic. 3, 30 (1990)

    MathSciNet  Google Scholar 

  3. M. Ghalambaz, S. Mehryan, E. Izadpanahi, A.J. Chamkha, D. Wen, MHD natural convection of Cu-Al 2 O 3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–43 (2019)

    Article  Google Scholar 

  4. S. Mehryan, M. Izadi, A.J. Chamkha, M.A. Sheremet, Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J. Mol. Liq. 263, 510–25 (2018)

    Article  Google Scholar 

  5. A. Metzner, R. Otto, Agitation of non-Newtonian fluids. AIChE J. 3, 3–10 (1957)

    Article  Google Scholar 

  6. W. Aftab, X. Huang, R. Zou, The Application of Carbon Materials in Latent Heat Thermal Energy Storage (LHTES). Thermal Transport in Carbon-Based Nanomaterials (Elsevier, Amsterdam, 2017), pp. 243–65

    Book  Google Scholar 

  7. W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, R. Zou, Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 14, 4268–91 (2021)

    Article  Google Scholar 

  8. M. Yousaf, U. Naseer, Y. Li, Z. Ali, N. Mahmood, L. Wang et al., A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ. Sci. 14, 2670–707 (2021)

    Article  Google Scholar 

  9. M. Hamid, M. Usman, Z. Khan, R.U. Haq, W. Wang, Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. Eur. Phys. J. Plus 133, 527 (2018)

    Article  Google Scholar 

  10. M. Hamid, T. Zubair, M. Usman, Z.H. Khan, W. Wang, Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid. J. Comput. Des. Eng. 6, 584–92 (2019)

    Google Scholar 

  11. Z. Khan, M. Usman, T. Zubair, M. Hamid, R. Haq, Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring-Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 125005 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  12. M. Usman, T. Zubair, M. Hamid, R.U. Haq, Z.H. Khan. Unsteady flow and heat transfer of tangent-hyperbolic fluid: Legendre wavelet-based analysis. Heat Trans. 50(4), 3079–3093 (2021)

  13. A. Wakif, I.L. Animasaun, P.S. Narayana, G. Sarojamma, Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020)

  14. M.U. Ashraf, M. Qasim, A. Wakif, M.I. Afridi, I.L. Animasaun. A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: a physiological application. Numer. Methods Partial Diff. Equ. 38(3), 666–692 (2022)

  15. A. Wakif, Z. Boulahia, F. Ali, M.R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu-water nanofluids. Int. J. Appl. Comput. Math. 4, 81 (2018)

    MathSciNet  Article  Google Scholar 

  16. I. Pop, M. Sheremet, Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation. Int. J. Numer. Methods Heat Fluid Flow 27(10), 2318–2332 (2017).

  17. M. Hamid, M. Usman, Z. Khan, R. Haq, W. Wang, Heat transfer and flow analysis of Casson fluid enclosed in a partially heated trapezoidal cavity. Int. Commun. Heat Mass Transf. 108, 104284 (2019)

    Article  Google Scholar 

  18. Z.H. Khan, W.A. Khan, M. Hamid, Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity. J. Thermal Anal. Calorim. (2020).

    Article  Google Scholar 

  19. M. Aneja, A. Chandra, S. Sharma, Natural convection in a partially heated porous cavity to Casson fluid. Int. Commun. Heat Mass Transf. 114, 104555 (2020)

    Article  Google Scholar 

  20. K.U. Rehman, M. Malik, Q.M. Al-Mdallal, W. Al-Kouz, Heat transfer analysis on buoyantly convective non-Newtonian stream in a hexagonal enclosure rooted with T-Shaped flipper: hybrid meshed analysis. Case Studies Therm. Eng. 21, 100725 (2020)

    Article  Google Scholar 

  21. W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, R. Zou, Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 11, 1392–424 (2018)

    Article  Google Scholar 

  22. W. Aftab, A. Mahmood, W. Guo, M. Yousaf, H. Tabassum, X. Huang et al., Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 20, 401–9 (2019)

    Article  Google Scholar 

  23. A. Wakif, Z. Boulahia, R. Sehaqui, A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. 9, 1438–54 (2018)

    ADS  Article  Google Scholar 

  24. A. Wakif, Z. Boulahia, R. Sehaqui, Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 7, 2134–52 (2017)

    ADS  Article  Google Scholar 

  25. M. Zaydan, A. Wakif, I. Animasaun, U. Khan, D. Baleanu, R. Sehaqui, Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno’s nanofluid model. Case Stud. Thermal Eng. 22, 100726 (2020)

    Article  Google Scholar 

  26. A. Wakif, A. Chamkha, T. Thumma, I. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J. Thermal Anal. Calorim. (2020).

    Article  Google Scholar 

  27. M. Yousaf, U. Naseer, Y. Li, Z. Ali, N. Mahmood, L. Wang et al., A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ. Sci. 14, 2670–707 (2021)

    Article  Google Scholar 

  28. B. Calcagni, F. Marsili, M. Paroncini, Natural convective heat transfer in square enclosures heated from below. Appl. Thermal Eng. 25, 2522–31 (2005)

    Article  Google Scholar 

  29. Z. Boulahia, A. Wakif, A.J. Chamkha, R. Sehaqui, Numerical study of natural and mixed convection in a square cavity filled by a Cu-water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 502 (2017)

    Article  Google Scholar 

  30. A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani et al., Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Phys. E 91, 15–31 (2017)

    Article  Google Scholar 

  31. T. Tayebi, A.J. Chamkha, Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow (2019).

    Article  Google Scholar 

  32. F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech. Sci. 124, 95–108 (2017)

    Article  Google Scholar 

  33. R.U. Haq, F.A. Soomro, H.F. Öztop, T. Mekkaoui, Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. Int. J. Heat Mass Transf. 131, 724–36 (2019)

    Article  Google Scholar 

  34. M.J. Uddin, A.F. Hoque, Convective heat transfer flow of nanofluid in an isosceles triangular shaped enclosure with an uneven bottom wall. Chem. Eng. Trans. 66, 403-8 (2018)

    Google Scholar 

  35. N.S. Bondareva, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Free convection in an open triangular cavity filled with a nanofluid under the effects of Brownian diffusion, thermophoresis and local heater. J. Heat Transf. (2018).

    Article  Google Scholar 

  36. A. Dogonchi, M.A. Ismael, A.J. Chamkha, D. Ganji, Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall. J. Thermal Anal. Calorim. 135, 3485–97 (2019)

    Article  Google Scholar 

  37. A.S. Dogonchi, M.A. Sheremet, I. Pop, D.D. Ganji, MHD natural convection of Cu/H\(_{2}\)O nanofluid in a horizontal semi-cylinder with a local triangular heater. Int. J. Numer. Methods Heat Fluid Flow 28(12), 2979–2996 (2018).

  38. K.M. Gangawane, H.F. Oztop, N. Abu-Hamdeh, Mixed convection characteristic in a lid-driven cavity containing heated triangular block: Effect of location and size of block. Int. J. Heat Mass Transf. 124, 860–875 (2018)

  39. M. Usman, M. Hamid, Z.H. Khan, R. Ul Haq, W.A. Khan, Finite element analysis of water-based Ferrofluid flow in a partially heated triangular cavity. Int. J. Numer. Methods Heat Fluid Flow 31(10), 3132–3147 (2021).

  40. C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    MathSciNet  Article  Google Scholar 

  41. P. Dechaumphai, Finite Element Method in Engineering (Chulalongkorn University Press, Bangkok, 1999)

    Google Scholar 

  42. L.J. Khaled-Abad, R. Salehi, Numerical and theoretical study of weak Galerkin finite element solutions of Turing patterns in reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 37, 302–40 (2020)

    MathSciNet  Article  Google Scholar 

  43. Z. Khan, W. Khan, M. Hamid, H. Liu, Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid-driven square cavity with Y-shaped obstacle. Phys. Fluids 32, 093609 (2020)

    ADS  Article  Google Scholar 

  44. M. Hamid, Z. Khan, W. Khan, R. Haq, Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle. Phys. Fluids 31, 103607 (2019)

    ADS  Article  Google Scholar 

Download references


The first author (ZHK) is profoundly grateful for the financial support from the Thousand Talents Plan 2019 for the Introduction of High-level Talents at Home and Abroad in Sichuan Province. The author (MH) is grateful to Fudan University for providing research opportunities in China through the International Exchange Post-Doctoral Fellowship. This work is supported by China Postdoctoral Science Foundation (No. 2020M681135).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Muhammad Hamid.

Ethics declarations

Conflict of interest

All the authors declare that there is no actual or potential conflict of interest, including any financial, personal, or other relationships with other people or organizations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.H., Usman, M., Khan, W.A. et al. Thermal treatment inside a partially heated triangular cavity filled with casson fluid with an inner cylindrical obstacle via FEM approach. Eur. Phys. J. Spec. Top. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: