Skip to main content
Log in

Laminar mixed convection of permeable fluid overlaying immiscible nanofluid

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Immiscible flow has been extensively emerged in science and technology. Researchers and architects were delighted by the concept of multiple fluid transport by the means of shear pressure. The reliance of drag impact of the two immiscible liquids is very much aspired but yet challenging. A mathematical examination has been conveyed to understand the free convection inside a vertical vessel. There are two immiscible liquids filled in the enclosure which are synthesized as two discrete regions encompassing a nanofluid and permeable fluid. The Tiwari–Das model and Dupuit–Forchheimer is utilized to define the nanofluid and permeable fluid, respectively. Southwell over-relaxation technique subject to suitable interface and boundary conditions is bestowed to solve the conservation equations. Essential criteria defining the fluid flow and energy transfer are studied deliberately. The outcomes demonstrate that the Grashof, Brinkman and Darcy numbers augment the velocity, whereas inertial, solid volume fraction, viscosity and thermal conductivity ratios depletes the momentum. The temperature distributions are not much modulated with any of the controlling parameters. By sagging nanoparticles, the flow is not much reformed but reckoning copper nanoparticle as ethylene glycol–mineral oil base fluid regulates the supreme flow. Diamond nanoparticle dropped in water catalyzes the highest rate of heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_{i} \) :

Ratio of length to width \(\left( {\frac{a_{i} }{2b}} \right) \)(-)

\(a_{i} \) :

Length of the conduit (m)

b :

Breadth of conduit (m)

Br :

Brinkman number \(\left( {\frac{\mu _{f}^{3}}{K_{f} \,\,\rho _{f} ^{2}\,\,b^{2}\,\,\left( {T_{w2} \,-\,T_{w1} } \right) \,\,}} \right) \)

Da :

Darcy number \(\left( {\frac{\kappa }{b^{2}}} \right) \)

Gr :

Grashof number \(\left( {\frac{g\,\,\rho _{f}^{2} \,\beta _{f} b^{3}\left( {T_{w2} \,-\,T_{w1} } \right) }{\mu _{f}^{2} }} \right) \)

\(K_{nf} \) :

Thermal conductivity (W/mK)

\(Nx_{i} ,\,Ny\) :

Number of grid points in x and y directions (-)

n :

Ratio of densities \(\left( {\frac{\rho _{2} }{\rho _{f} }} \right) \) (-)

P :

Pressure (Pa)

p :

Pressure gradient in no dimension \(\left( {\frac{\rho _{f} \,\,b^{3}}{\mu _{f}^{2} \,\,}\,\frac{\partial P}{\partial Z}} \right) \)(-)

\(T_{i} \) :

Temperature (K)

\(T_{wi} \) :

Temperature on the walls (K)

\(W_{i} \) :

Velocity (m/s)

\(w_{i} \) :

Velocity with no dimension (-)

xyz :

Coordinates with zero dimension (-)

\(\Delta x_{i} \) and \(\Delta y\) :

Grid size (m)

\(X_{i} \,,\,\,Y,Z\) :

Dimensional ordinates (-)

\(\lambda \) :

Proportion of the viscosity \(\left( {\frac{\mu _{2} }{\mu _{f} }} \right) \)(-)

\(\beta _{i} \) :

Thermal expansion coefficient (K)

\(\beta \) :

Proportion of heat expansion coefficients \(\left( {\frac{\beta _{2} }{\beta _{f} }} \right) \) (-)

K :

Proportion of the thermal conductivity \(\left( {\frac{K_{2} }{K_{f} }} \right) \) (-)

\(\mu \) :

Dynamic viscosity (-)

\(\theta \) :

Dimensionless temperature (-)

\(\rho \) :

Density of the fluid (kg/m\(^{3})\)

\(i\,=\,1,2\) :

Quantities for region-1 and region-2, respectively.

nf :

Nanofluid

f :

Base fluid

s :

Solid nanoparticles

References

  1. T. Himmel, M.H. Wagner, Experimental determination of interfacial slip between polyethylene and thermoplastic elastomers. J. Rheol. 57, 1773–1785 (2013)

    Article  ADS  Google Scholar 

  2. P.C. Lee, H.E. Park, D.C. Morse, C.W. Macosko, Polymer-polymer interfacial slip in multilayered films. J. Rheol. 53, 893–915 (2009)

    Article  ADS  Google Scholar 

  3. N.A. Khan, F. Sultan, Q. Rubbab, Optimal solution of nonlinear heat and mass transfer in a two-layer flow with nano-Eyring-Powell fluid. Results Phys 5, 199–205 (2015)

    Article  ADS  Google Scholar 

  4. Y. Huang, H. Li, T.N. Wong, Two immiscible layers of electro-osmotic driven flow with a layer of conducting non-Newtonian fluid. Int. J. Heat Mass Transf. 74, 368–375 (2014)

    Article  Google Scholar 

  5. Dai, Experiments on two-layer density-stratified inertial gravity currents. Phys. Rev. Fluids 2 (2017)

  6. C. Golia, A. Viviani, Buoyancy and thermo capillary flows in rectangular enclosures filled by two immiscible liquids. Adv. Space Res. 13, 87–96 (1993)

    Article  ADS  Google Scholar 

  7. J.N. Koster, K.Y. Nguyen, Steady natural convection in a double layer of immiscible liquids with density inversion. Int. J. Heat Mass Transfer 39, 467–478 (1996)

    Article  MATH  Google Scholar 

  8. S.A.B. Al Omari, Enhancement of heat transfer from hot water by co-flowing it with mercury in a Mini-Channel. Int. Comm. Heat Mass Transfer, 38, 1073–1079 (2011)

  9. A.R.A. Khaled, K. Vafai, Heat transfer enhancement by layering of two immiscible co-flows. Int. J. Heat Mass Transfer 68, 299–309 (2014)

    Article  Google Scholar 

  10. J. Hasnain, Z. Abbas, M. Sajid, Effects of porosity and mixed convection on MHD two phase fluid flow in an inclined channel. PLoS ONE 10, 1–16 (2015)

    Article  Google Scholar 

  11. C. Sus, E. Ja, Enhancing thermal conductivity of fluids with nanoparticles, ed. United States, (1995) 99–105

  12. M. Bahiraei, S. Heshmatian, Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene-silver nanoparticles. Energy Convers. Manage. 168, 357–370 (2018)

    Article  Google Scholar 

  13. K. Milani Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technol. 313, 99–111 (2017)

  14. Q. Zhao, H. Xu, L. Tao, Homogeneous-heterogeneous reactions in boundary-layer flow of a nanofluid near the forward stagnation point of a cylinder. J. Heat Transfer 139, 034502 (2017)

    Article  Google Scholar 

  15. J. Zeng, Y. Xuan, Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl. Energy 212, 809–819 (2018)

    Article  Google Scholar 

  16. Z.H. Khan, W.A. Khan, M.A. Sheremet, M. Hamid , M. Dul, Irreversibility’s in natural convection inside a right-angled trapezoidal cavity with sinusoidal wall temperature. Phys. Fluids, 33, 083612 (2020)

  17. Z.H. Khan, M. Hamid, W.A. Khan, L. Sun, H. Liu, Thermal non-equilibrium natural convection in a trapezoidal porous cavity with heated cylindrical obstacles. Int. Comm. Heat Mass Transfer 126, 105460 (2021)

    Article  Google Scholar 

  18. M. Usman, M. Hamid, Z.H. Khan, R. Ul Haq, W.A. Khan, Finite element analysis of water based Ferrofluid flow in a partially heated triangular cavity. Int. J. Num. Methods Heat Fluid Flow 31, 3132–3147 (2021)

  19. M. Sheikholeslami, M. Hamid, R.U. Haq, S. Ahmad, Numerical simulation of wavy porous enclosure filled with hybrid nanofluid involving Lorentz effect. Phys. Scr. 95, 115701 (2020)

    Article  ADS  Google Scholar 

  20. M. Hamid, Z.H. Khan, W.A. Khan, R.U. Haq, Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle. Phys. Fluids 31, 103607 (2019)

    Article  ADS  Google Scholar 

  21. Z.H. Khan, W.A. Khan, M. Hamid, H. Liu, Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid-driven square cavity with Y-shaped obstacle. Phys. Fluids 32, 093609 (2020)

    Article  ADS  Google Scholar 

  22. Isaac Lare Animasaun, 47nm alumina-water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55, 2375–2389 (2016)

    Article  Google Scholar 

  23. Y.Q. Song, B.D. Obidey, N.A. Shah, I.L. Animasaun, Y.M. Mahrous, J.D. Chung, Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface. Case Stud. Thermal Eng. 26, 101050 (2021)

    Article  Google Scholar 

  24. O.K. Koriko, K. S. Adegbie, N. A. Shah, I.L. Animasaun, M. A. Olotu, Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: The case of blood-gold Carreau nanofluid and dusty fluid. Numer. Methods Partial Differ. Equ. 2021 (in Press). https://doi.org/10.1002/num.22754

  25. G.R. Kefayati, FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 273, 176–190 (2015)

    Article  Google Scholar 

  26. M.M. Rashidi, M. Reza, S. Gupta, MHD stagnation point flow of micropolar nanofluid between parallel porous plates with uniform blowing. Powder Technol. 301, 876–885 (2016)

    Article  Google Scholar 

  27. G. Diglio, C. Roselli, M. Sasso, J.C. Umavathi, Borehole heat exchanger with nanofluids as heat carrier. Geothermic 72, 112–123 (2018)

    Article  Google Scholar 

  28. J.C. Umavathi, M.A. Sheremet, Heat transfer of viscous fluid in a vertical channel sandwiched between nanofluid porous zones. J. Thermal Anal. Calorimetry 144, 1389–1399 (2021)

    Article  Google Scholar 

  29. J.C. Umavathi, O.A. Bég, Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic field: A Numerical study. Int. J. Nanosci. Technol. 12, 59–90 (2021)

    Article  Google Scholar 

  30. M.A. Sheremet, C. Revnic, I. Pop, Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect. Appl. Math. Comput. 299, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  31. F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng. Sci. Technol. Int. J. 20, 1324–1333 (2017)

  32. J. Mackolil, B. Mahantesh, Inclined magnetic field and nanoparticle aggregation effects on thermal Marangoni convection in nanoliquid: A sensitivity analysis. Chin. J. Phys. 69, 24–37 (2021)

    Article  MathSciNet  Google Scholar 

  33. I. Ahmad, M. Faisal, T. Javed, Magneto-nanofluid flow due to bidirectional stretching surface in a porous medium. Spec. Topics Rev. Porous Media Int. J. 10, 457–473 (2019)

    Article  Google Scholar 

  34. T. Tayebi, A.J. Chamkha, Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer. Heat Transfer Part A Appl. 70(10), 1141–1156 (2016)

    Article  ADS  Google Scholar 

  35. L. Kolsi et al., Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide-water nanofluid. Numer. Heat Transfer Part A Appl. 70(3), 242–259 (2016)

    Article  ADS  Google Scholar 

  36. E. Abu-Nada, A.J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a Cuo-EG-water nanofluid. Int. J. Therm. Sci. 49, 2339–2352 (2010)

    Article  Google Scholar 

  37. H. Zargartalebi et al., Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer. Heat Transfer Part A Appl. 70(4), 432–445 (2016)

    Article  ADS  Google Scholar 

  38. R.Y. Jou, S.C. Tzeng, Numerical research of natural convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transfer 33(6), 727–736 (2006)

    Article  Google Scholar 

  39. C.J. Ho et al., Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. Int. J. Thermal Sci. 49, 1345–1353 (2010)

    Article  Google Scholar 

  40. Y. Hu et al., Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int. J. Heat Mass Transfer 78, 380–392 (2014)

    Article  Google Scholar 

  41. R.A. Mahdi, H.A. Mohammed, K.M. Munisamy, N.H. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)

    Article  Google Scholar 

  42. K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, K. Vafai, Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int. J. Heat Mass Transfer 105, 811–825 (2017)

    Article  Google Scholar 

  43. R.K. Nayak, S. Bhattacharyya, I. Pop, Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. Int. J. Heat Mass Transfer 125, 908–919 (2018)

    Article  Google Scholar 

  44. J.C. Umavathi, O.A. Bég, Effects of thermo physical properties on heat transfer at at the interface of two immiscible fluids in a vertical duct: Numerical study. Int. J. Heat Mass Transfer 154, 1196131–11961318 (2020)

    Article  Google Scholar 

  45. J.C. Umavathi, O. A. Beg, Convective fluid flow and heat transfer in a vertical rectangular duct containing a horizontal porous medium and fluid layer. Int. J. Methods Heat Fluid Flow 31, 1320–1344 (2020)

  46. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  ADS  Google Scholar 

  47. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, London, 1904), pp. 435–441

    Google Scholar 

  48. J.C. Umavathi, O.A. Bég, Effects of thermophysical properties on heat transfer at the interface of two immiscible fluids in a vertical duct: Numerical study. Int. J. Heat Mass Transfer 154, 119613 (2020)

    Article  Google Scholar 

  49. H.F. Oztop, V. Yasin, K. Ahmet, Natural convection in a vertically divided square enclosure by a solid partition into air and water regions. Int. J. Heat Mass Transfer 52, 5909–5921 (2009)

    Article  MATH  Google Scholar 

  50. N.P. Moshkin, Numerical model to study natural convection in a rectangular enclosure filled with two immiscible fluids. Int. J. Heat Fluid Flow 23, 373–379 (2002)

    Article  Google Scholar 

  51. G. De Vahl Davis, Laminar natural convection in an enclosed rectangular cavity. Int. J. Heat Mass Transfer. 1, 1167–1693 (1968)

  52. G. De Vahl Davis, Natural convection of air in a square cavity. Int. J. Num. Meth. Fluids 3, 249–264 (1983)

  53. Issac Lare Animasaun, Dynamics of unsteady MHD convective flow with thermophoresis of particles and variable thermo-physical proerties past a vertical surface moving through binary mixture, Open Journaal of. Fluid Dyn. 5, 106–120 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Umavathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umavathi, J.C. Laminar mixed convection of permeable fluid overlaying immiscible nanofluid. Eur. Phys. J. Spec. Top. 231, 2583–2603 (2022). https://doi.org/10.1140/epjs/s11734-022-00585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00585-8

Navigation