Skip to main content

Jet impingement cooling using shear thinning nanofluid under the combined effects of inclined separated partition at the inlet and magnetic field

Abstract

Combined effects of using inclined partition and magnetic field on the cooling performance of double slot jet impingement are analyzed with finite element method. Two different shear thinning nanofluids are used while experimental data is available for the rheological properties. Different values of of Reynolds number (Re between 100 and 1000), velocity ratio (VR, between 0.2 and 1), opening ratio (OR, between 0.05 and 0.95), magnetic field strength (Ha, between 0 and 30) and inclination of partition (\(\Omega \), between 0 and 40) are used. It is observed that varying VR of the jets, size/inclination of the partition, magnetic field strength and nanfluid type, can be used to control the local and average convective heat transfer and cooling performance features effectively. The average Nusselt number (Nu) rises with higher VR while at the highest VR the amount of increments are 23.5\(\%\) and 28.5\(\%\) with first (NF1) and second (NF2) nanofluid (NF). When magnetic field is imposed, effects of OR becomes important with NF1 at the lowest strength of magnetic field. Average Nu reduces with higher magnetic field strength for NF1 while \(14.4\%\) reduction for the highest strength at OR = 0.95 is achieved. However, for NF2 the trend is opposite and \(18.8\%\) increment is obtained. Variations in the average Nu becomes \(7.6\%\) and \(1.8\%\) for NF1 and NF2 when inclination of the partition is changed. The cooling performance is estimated by using a feed-forward network modeling approach in terms of average Nu for NF1 and NF2 by using 25 neuron in the hidden layer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

h :

Heat transfer coefficient

H :

Separating distance

Ha :

Hartmann number

k :

Thermal conductivity

L :

Plate length

m :

Consistency index

n :

Power law index

Nu:

Nusselt number

OR :

Opening ratio

p :

Pressure

Pr:

Prandtl number

Re:

Reynolds number

T :

Temperature

u, v :

X-y velocity components

VR :

Velocity ratio

w :

Slot width

x, y :

Cartesian coordinates

\(\alpha \) :

Thermal diffusivity

\(\theta \) :

Non-dimensional temperature

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density of the fluid

\(\Omega \) :

Partition inclination

c :

Cold wall

h :

Hot wall

m :

Average

nf :

Nanofluid

CFD:

Computational fluid dynamics

FEM:

Finite element method

FFN:

Feed forward network

HT:

Heat transfer

J-I:

Jet impingement

M-F:

Magnetic field

NF:

Nanofluid

OR:

Opening ratio

VR:

Velocity ratio

References

  1. Y. Varol, H.F. Oztop, A. Koca, Effects of inclination angle on conduction-natural convection in divided enclosures filled with different fluids. Int. Commun. Heat Mass Transf. 37, 182–191 (2010)

    Article  Google Scholar 

  2. E. Bilgen, Natural convection in enclosures with partial partitions. Renewable Energy 26, 257–270 (2002)

    Article  Google Scholar 

  3. T. Nishimura, M. Shiraishi, F. Nagasawa, Y. Kawamura, Natural convection heat transfer in enclosures with multiple vertical partitions. Int. J. Heat Mass Transf. 31, 1679–1686 (1988)

    Article  Google Scholar 

  4. S. Bajorek, J. Lloyd, Experimental investigation of natural convection in partitioned enclosures 104, 527–532 (1982)

  5. F. Selimefendigil, H.F. Öztop, Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J. Mol. Liq. 216, 67–77 (2016)

    Article  Google Scholar 

  6. M.M. Alhazmy, Numerical investigation on using inclined partitions to reduce natural convection inside the cavities of hollow bricks. Int. J. Therm. Sci. 49, 2201–2210 (2010)

    Article  Google Scholar 

  7. M. Rabhi, H. Bouali, A. Mezrhab, Radiation-natural convection heat transfer in inclined rectangular enclosures with multiple partitions. Energy Convers. Manage. 49, 1228–1236 (2008)

    Article  Google Scholar 

  8. F. Selimefendigil, H.F. Öztop, Mhd pulsating forced convection of nanofluid over parallel plates with blocks in a channel. Int. J. Mech. Sci. 157, 726–740 (2019)

    Article  Google Scholar 

  9. V. Costa, Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions. Int. J. Heat Mass Transf. 55, 7812–7822 (2012)

    Article  Google Scholar 

  10. E. Jamesahar, M. Ghalambaz, A.J. Chamkha, Fluid-solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int. J. Heat Mass Transf. 100, 303–319 (2016)

    Article  Google Scholar 

  11. D. Kumar, A. Kumar, S. Subudhi, Effect of spatially varying magnetic field on the cooling of an electronic component by natural convection with magnetic nanofluids. J. Thermal Sci. Eng. Appl. 13, 061017 (2021)

    Article  Google Scholar 

  12. M. Sheikholeslami, Z. Shah, A. Shafee, I. Khan, I. Tlili, Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Sci. Rep. 9, 1–11 (2019)

    ADS  Article  Google Scholar 

  13. B.P. Geridonmez, H.F. Oztop, Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. Int. J. Mech. Sci. 161, 105077 (2019)

    Article  Google Scholar 

  14. A.A. Al-Rashed, L. Kolsi, H.F. Oztop, A. Aydi, E.H. Malekshah, N. Abu-Hamdeh, M.N. Borjini, 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E 99, 294–303 (2018)

    ADS  Article  Google Scholar 

  15. M. Sheikholeslami, K. Vajravelu, M.M. Rashidi, Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int. J. Heat Mass Transf. 92, 339–348 (2016)

    Article  Google Scholar 

  16. A. Hussanan, Z. Ismail, I. Khan, A.G. Hussein, S. Shafie, Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. Eur. Phys. J. Plus 129, 1–16 (2014)

    Article  Google Scholar 

  17. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains. J. Magn. Magn. Mater. 406, 266–281 (2016)

    ADS  Article  Google Scholar 

  18. G. Aaiza, I. Khan, S. Shafie, Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Res. Lett. 10, 1–14 (2015)

    Article  Google Scholar 

  19. S. Giwa, M. Sharifpur, M. Ahmadi, J. Meyer, A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J. Therm. Anal. Calorim. 145, 2581–2623 (2021)

    Article  Google Scholar 

  20. A. Hussanan, M.Z. Salleh, I. Khan, S. Shafie, Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil. J. Mol. Liq. 229, 482–488 (2017)

    Article  Google Scholar 

  21. S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Q.M. Al-Mdallal, Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci. Rep. 7, 1–13 (2017)

    Article  Google Scholar 

  22. B. M’hamed, N.A.C. Sidik, M.N.A.W.M. Yazid, R. Mamat, G. Najafi, G. Kefayati, A review on why researchers apply external magnetic field on nanofluids. Int. Commun. Heat Mass Transf. 78, 60–67 (2016)

    Article  Google Scholar 

  23. M. Sheikholeslami, H.B. Rokni, Magnetohydrodynamic CuO-water nanofluid in a porous complex-shaped enclosure. J. Thermal Sci. Eng. Appl. 9, 041007 (2017)

    Article  Google Scholar 

  24. K. Kahveci, S. Öztuna, Mhd natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B/Fluids 28, 744–752 (2009)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. S. Mehryan, M. Ghalambaz, M.A. Ismael, A.J. Chamkha, Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J. Magn. Magn. Mater. 424, 161–173 (2017)

    ADS  Article  Google Scholar 

  26. F. Selimefendigil, H.F. Öztop, Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int. J. Heat Mass Transf. 110, 231–247 (2017)

    Article  Google Scholar 

  27. H. Yamaguchi, Z. Zhang, S. Shuchi, K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box. J. Magn. Magn. Mater. 252, 203–205 (2002)

    ADS  Article  Google Scholar 

  28. S.S. Priam, R. Nasrin, Oriented magneto-conjugate heat transfer and entropy generation in an inclined domain having wavy partition. Int. Commun. Heat Mass Transf. 126, 105430 (2021)

    Article  Google Scholar 

  29. Y. Li, M. Firouzi, A. Karimipour, M. Afrand, Effect of an inclined partition with constant thermal conductivity on natural convection and entropy generation of a nanofluid under magnetic field inside an inclined enclosure: applicable for electronic cooling. Adv. Powder Technol. 31, 645–657 (2020)

    Article  Google Scholar 

  30. F. Selimefendigil, H.F. Öztop, Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications. Renew. Energy 162, 1076–1086 (2020)

    Article  Google Scholar 

  31. M. Ghalambaz, S. Mehryan, E. Izadpanahi, A.J. Chamkha, D. Wen, MHD natural convection of Cu-Al 2 O 3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2019)

    Article  Google Scholar 

  32. S. Izadi, T. Armaghani, R. Ghasemiasl, A.J. Chamkha, M. Molana, A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 343, 880–907 (2019)

    Article  Google Scholar 

  33. F. Selimefendigil, A.J. Chamkha, MHD mixed convection of Ag-MgO/water nanofluid in a triangular shape partitioned lid-driven square cavity involving a porous compound. J. Therm. Anal. Calorim. 143, 1467–1484 (2021)

    Article  Google Scholar 

  34. G. Krishan, K.C. Aw, R.N. Sharma, Synthetic jet impingement heat transfer enhancement-a review. Appl. Therm. Eng. 149, 1305–1323 (2019)

    Article  Google Scholar 

  35. C. Gau, C. Chung, Surface curvature effect on slot-air-jet impingement cooling flow and heat transfer process. J. Heat Transf. 113, 858–864 (1991)

    ADS  Article  Google Scholar 

  36. P. Li, D. Guo, R. Liu, Mechanism analysis of heat transfer and flow structure of periodic pulsating nanofluids slot-jet impingement with different waveforms. Appl. Therm. Eng. 152, 937–945 (2019)

    ADS  Article  Google Scholar 

  37. Y. Zhou, G. Lin, X. Bu, L. Bai, D. Wen, Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chin. J. Aeronaut. 30, 586–594 (2017)

    Article  Google Scholar 

  38. S. Abishek, R. Narayanaswamy, Low frequency pulsating jet impingement boiling and single phase heat transfer. Int. J. Heat Mass Transf. 159, 120052 (2020)

    Article  Google Scholar 

  39. V.S. Patil, R. Vedula, Local heat transfer for jet impingement onto a concave surface including injection nozzle length to diameter and curvature ratio effects. Exp. Thermal Fluid Sci. 92, 375–389 (2018)

    Article  Google Scholar 

  40. F. Selimefendigil, H.F. Öztop, Al\(_2\)O\(_3\)-water nanofluid jet impingement cooling with magnetic field. Heat Transfer Eng. 41, 50–64 (2020)

    ADS  Article  Google Scholar 

  41. P.A.K. Lam, K.A. Prakash, A numerical investigation of heat transfer and entropy generation during jet impingement cooling of protruding heat sources without and with porous medium. Energy Convers. Manag. 89, 626–643 (2015)

    Article  Google Scholar 

  42. N.H. Saeid, A.A. Mohamad, Jet impingement cooling of a horizontal surface in a confined porous medium: Mixed convection regime. Int. J. Heat Mass Transf. 49, 3906–3913 (2006)

    MATH  Article  Google Scholar 

  43. J. Mohammadpour, A. Lee, Investigation of nanoparticle effects on jet impingement heat transfer: a review. J. Mol. Liq. 113819 (2020)

  44. P.K. Tyagi, R. Kumar, P.K. Mondal, A review of the state-of-the-art nanofluid spray and jet impingement cooling. Phys. Fluids 32, 121301 (2020)

    ADS  Article  Google Scholar 

  45. R. Nimmagadda, H.D. Haustein, L.G. Asirvatham, S. Wongwises, Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids. J. Magn. Magn. Mater. 479, 268–281 (2019)

    ADS  Article  Google Scholar 

  46. L. Nakharintr, P. Naphon, Magnetic field effect on the enhancement of nanofluids heat transfer of a confined jet impingement in mini-channel heat sink. Int. J. Heat Mass Transf. 110, 753–759 (2017)

    Article  Google Scholar 

  47. F. Selimefendigil, H.F. Öztop, Performance assessment of a thermoelectric module by using rotating circular cylinders and nanofluids in the channel flow for renewable energy applications. J. Clean. Prod. 279, 123426 (2021)

    Article  Google Scholar 

  48. H. Lee, M. Ha, H. Yoon, A numerical study on the fluid flow and heat transfer in the confined jet flow in the presence of magnetic field. Int. J. Heat Mass Transf. 48, 5297–5309 (2005)

    MATH  Article  Google Scholar 

  49. S. Kalogirou, Applications of artificial neural networks in energy systems a review. Energy Convers. Manag. 40, 1073–1087 (1999)

    Article  Google Scholar 

  50. A. Mellit, S.A. Kalogirou, ANFIS-based modelling for photovoltaic power supply system: a case study. Renew. Energy 36, 250–258 (2011)

    Article  Google Scholar 

  51. Y. Varol, H.F. Oztop, E. Avci, Estimation of thermal and flow fields due to natural convection using support vector machines (svm) in a porous cavity with discrete heat sources. Int. Commun. Heat Mass Transf. 35, 928–936 (2008)

    Article  Google Scholar 

  52. K. Gopalakrishnan, S.K. Khaitan, S. Kalogirou, Soft computing in green and renewable energy systems, vol. 269 (Springer, New York, 2011)

    Book  Google Scholar 

  53. Y. Varol, E. Avci, A. Koca, H.F. Oztop, Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using adaptive-network-based fuzzy inference system (anfis) and artificial neural network (ann). Int. Commun. Heat Mass Transf. 34, 887–896 (2007)

    Article  Google Scholar 

  54. E. Rodrigues, Á. Gomes, A.R. Gaspar, C.H. Antunes, Estimation of renewable energy and built environment-related variables using neural networks - A review. Renew. Sustain. Energy Rev. 94, 959–988 (2018)

    Article  Google Scholar 

  55. A.H. Elsheikh, S.W. Sharshir, M. AbdElaziz, A. Kabeel, W. Guilan, Z. Haiou, Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol. Energy 180, 622–639 (2019)

    ADS  Article  Google Scholar 

  56. F. Selimefendigil, H.F. Oztop, POD-based reduced order model of a thermoacoustic heat engine. Eur. J. Mech. B. Fluids 48, 135–142 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. P. Naphon, S. Wiriyasart, T. Arisariyawong, L. Nakharintr, ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int. J. Heat Mass Transf. 131, 329–340 (2019)

    Article  Google Scholar 

  58. F. Selimefendigil, H.F. Öztop, Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder. Int. J. Heat Mass Transf. 121, 233–245 (2018)

    Article  Google Scholar 

  59. A. Husain, S.-M. Kim, K.-Y. Kim, Performance analysis and design optimization of micro-jet impingement heat sink. Heat Mass Transf. 49, 1613–1624 (2013)

    ADS  Article  Google Scholar 

  60. X. Song, J. Zhang, S. Kang, M. Ma, B. Ji, W. Cao, V. Pickert, Surrogate-based analysis and optimization for the design of heat sinks with jet impingement. IEEE Trans. Components Packaging Manuf. Technol. 4, 429–437 (2013)

    Article  Google Scholar 

  61. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, vol. 1 (Wiley, Amsterdam, 2006)

    Google Scholar 

  62. A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int. J. Therm. Sci. 47, 1113–1122 (2008)

    Article  Google Scholar 

  63. N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids. Heat Mass Transf. 39, 775–784 (2003)

    ADS  MATH  Article  Google Scholar 

  64. C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al\(_2\)O\(_3\)) thermal conductivity enhancement. Appl. Phys. Lett. 87, 153107 (2005)

    ADS  Article  Google Scholar 

  65. R.W. Lewis, P. Nithiarasu, K.N. Seetharamu, Fundamentals of the finite element method for heat and fluid flow (Wiley, Amsterdam, 2004)

    Book  Google Scholar 

  66. R.W. Lewis, K. Morgan, H. Thomas, K.N. Seetharamu, The finite element method in heat transfer analysis (Wiley, Amsterdam, 1996)

    MATH  Google Scholar 

  67. J.N. Reddy, D.K. Gartling, The finite element method in heat transfer and fluid dynamics (CRC Press, New York, 2010)

    MATH  Book  Google Scholar 

  68. J. C. Heinrich, D. W. Pepper, Intermediate finite element method: fluid flow and heat transfer applications, Routledge (2017)

  69. Y. Chou, Y. Hung, Impingement cooling of an isothermally heated surface with a confined slot jet. ASME Trans. J. Heat Transf. 116, 479–482 (1994)

  70. O. Manca, D. Ricci, S. Nardini, G. Di Lorenzo, Thermal and fluid dynamic behaviors of confined laminar impinging slot jets with nanofluids. Int. Commun. Heat Mass Transf. 70, 15–26 (2016)

    Article  Google Scholar 

  71. V. Khandelwal, A. Dhiman, L. Baranyi, Laminar flow of non-Newtonian shear-thinning fluids in a T-channel. Comput. Fluids 108, 79–91 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  72. H.F. Oztop, K. Al-Salem, I. Pop, Mhd mixed convection in a lid-driven cavity with corner heater. Int. J. Heat Mass Transf. 54, 494–3504 (2011)

    MATH  Google Scholar 

  73. B. Pekmen, M.T. Sezgin, Mhd flow and heat transfer in a lid-driven porous enclosure. Comput. Fluids 89, 191–199 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  74. F. Selimefendigil, H.F. Oztop, Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int. J. Heat Mass Transf. 78, 741–754 (2014)

    Article  Google Scholar 

  75. C. Yu, M.T. Manry, J. Li, P.L. Narasimha, An efficient hidden layer training method for the multilayer perceptron. Neurocomputing 70, 525–535 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il - Saudi Arabia through project number RG-21 057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Selimefendigil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selimefendigil, F., Kolsi, L., Ayadi, B. et al. Jet impingement cooling using shear thinning nanofluid under the combined effects of inclined separated partition at the inlet and magnetic field. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00583-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00583-w