Skip to main content

Optimization of a vibrating MEMS electromagnetic energy harvester using simulations

Abstract

Nowadays, wireless sensor networks (WSN) are becoming essential in our daily life. However, a major constraint concerns the energy power supply. Indeed, batteries need to be recharged or replaced often which implies a limited lifetime for WSN nodes. One alternative consists in harvesting mechanical energy from surrounding vibrations of the environment. Using finite element simulations, we report here a complete guideline to optimize a MEMS electromagnetic energy harvester consisting of an in-plane vibrating silicon frame supporting an array of micromagnets that faces a static 2D micro-coil. The dimensioning of the magnet array and the specific design of the coil are addressed, considering patterned 50 \(\upmu \)m thick NdFeB films with out of plane magnetization. The optimization of the electromechanical coupling which allows to efficiently convert the energy results from a trade-off between the high magnetic flux gradients produced by the micromagnets and the maximum number of turns of the facing coil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. Energy Harvesting Technologies; Priya, S., Inman, D. J., Eds.; Springer US: Boston, MA, 2009. https://doi.org/10.1007/978-0-387-76464-1

  2. C. Wei, X. Jing, A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017). https://doi.org/10.1016/j.rser.2017.01.073

  3. Y. Tan, Y. Dong, X. Wang, Review of MEMS electromagnetic vibration energy harvester. J. Microelectromech. Syst. 26(1), 1–16 (2017). https://doi.org/10.1109/JMEMS.2016.2611677

    Article  Google Scholar 

  4. M. Han, Z. Li, X. Sun, H. Zhang, Analysis of an In-Plane Electromagnetic Energy Harvester with Integrated Magnet Array. Sens. Actuators Phys. 219, 38–46 (2014). https://doi.org/10.1016/j.sna.2014.08.008

    Article  Google Scholar 

  5. C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators Phys. 52, 8–11 (1996)

    Article  Google Scholar 

  6. N.G. Stephen, On Energy Harvesting from Ambient Vibration. J. Sound Vib. 293(1–2), 409–425 (2006). https://doi.org/10.1016/j.jsv.2005.10.003

    ADS  Article  Google Scholar 

  7. S. Roy, D. Mallick, K. Paul, MEMS-Based Vibrational Energy Harvesting and Conversion Employing Micro-/Nano-Magnetics. IEEE Trans. Magn.2019, 1–15 https://doi.org/10.1109/TMAG.2019.2896105

  8. D. Mallick, K. Paul, T. Maity, S. Roy, Magnetic Performances and Switching Behavior of Co-Rich CoPtP Micro-Magnets for Applications in Magnetic MEMS. J. Appl. Phys. 125(2), 023902 (2019). https://doi.org/10.1063/1.5063860

    ADS  Article  Google Scholar 

  9. M. Kustov, P. Laczkowski, D. Hykel, K. Hasselbach, F. Dumas-Bouchiat, D. O’Brien, P. Kauffmann, R. Grechishkin, D. Givord, G. Reyne, O. Cugat, N.M. Dempsey, Magnetic characterization of micropatterned Nd-Fe-B Hard magnetic films using scanning hall probe microscopy. J. Appl. Phys. 108(6), 063914 (2010). https://doi.org/10.1063/1.3486513

  10. F.O. Keller, R. Haettel, T. Devillers, N.M. Dempsey, Batch Fabrication of 50 Lm Thick Anisotropic Nd-Fe-B Micromagnets. IEEE Trans. Magn.2021, 1–1. https://doi.org/10.1109/TMAG.2021.3101911

  11. K. Paul, D. Mallick, S. Roy, Performance Improvement of MEMS Electromagnetic Vibration Energy Harvester Using Optimized Patterns of Micromagnet Arrays. IEEE Magn. Lett. 12, 1–5 (2021). https://doi.org/10.1109/LMAG.2021.3088403

    Article  Google Scholar 

  12. P. Wang, K. Tanaka, S. Sugiyama, X. Dai, X. Zhao, J. Liu, A Micro Electromagnetic Low Level Vibration Energy Harvester Based on MEMS Technology. Microsyst. Technol. 15(6), 941–951 (2009). https://doi.org/10.1007/s00542-009-0827-0

    Article  Google Scholar 

  13. R. Fujiwara, T. Devillers, D. Givord, N.M. Dempsey, Characterization of the Magnetic Properties of NdFeB Thick Films Exposed to Elevated Temperatures. AIP Adv. 8(5), 056225 (2018). https://doi.org/10.1063/1.5007674

    ADS  Article  Google Scholar 

  14. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  15. K. Yamaguchi, T. Fujita, Y. Tanaka, N. Takehira, K. Sonoda, K. Kanda, K. Maenaka, MEMS Batch Fabrication of the Bipolar Micro Magnet Array for Electromagnetic Vibration Harvester. J. Phys. Conf. Ser. 557, 012033 (2014). https://doi.org/10.1088/1742-6596/557/1/012033

    Article  Google Scholar 

Download references

Acknowledgements

This study has been partially supported through the French national project POMADE (ANR 19-CE09-0021-01), the EUR grant NanoX n°ANR-17-EURE-0009 in the framework of the “ Programme des Investissements d’Avenir” and the prematuration program of the Région Occitanie (AimCap). PM thanks the Région Occitanie and the Université Fédérale de Toulouse for phD funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lise-Marie Lacroix or Thomas Blon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lecerf, I., Moritz, P., Angulo-Cervera, J.E. et al. Optimization of a vibrating MEMS electromagnetic energy harvester using simulations. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00577-8