Skip to main content
Log in

High temperature spark plasma sintering, a fast and one step route to achieve dense and efficient \(\text {SrTiO}_3\)-based thermoelectric ceramics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

\((\text {Sr}_{0.95}\text {La}_{0.05})_{0.95}\square _{0.05}\text {TiO}_3\) ceramics were prepared by solid state reaction and sintered by spark plasma sintering at different temperatures ranging from 1473 to 1873 K for 10 min. The thermoelectric properties show that sintering at temperatures higher than 1773 K allows reaching high thermoelectric properties similar to the ones obtained after annealing at high temperatures in \(\text {H}_2/\text {N}_2\) for several hours. The high temperature sintered samples exhibit highest power factor near room temperature, resulting in ZT values higher than 0.1. Therefore, the 10 min short SPS process at high temperatures described in this paper is an easy, cheap, fast, and one step route to obtain dense and efficient \(\text {SrTiO}_3\)-based thermoelectric ceramics. However, SEM observations show that the samples are not pure perovskite phase but contain titanium oxide and lanthanum compound aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in \({{\rm NaCo}}_2{{\rm O}}_4\) single crystals. Phys. Rev. B 56, R12685–R12687 (1997)

    Article  ADS  Google Scholar 

  2. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32, 525–540 (2012)

    Article  Google Scholar 

  3. M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 25, 2911–2920 (2013)

    Article  Google Scholar 

  4. M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (\({{\rm Ca}}_2{{\rm CoO}}_3\))\(_{0.7}{{\rm CoO}}_2\) with a \({{\rm Ca}}_3{{\rm Co}}_4{{\rm O}}_9\) structure. Appl. Phys. Lett. 82, 1851–1853 (2003)

  5. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: \({{\rm Ca}}_3{{\rm Co}}_4{{\rm O}}_9\). Phys. Rev. B 62, 166–175 (2000)

    Article  ADS  Google Scholar 

  6. F. Delorme, C. Chen, B. Pignon, F. Schoenstein, L. Perriere, F. Giovannelli, Promising high temperature thermoelectric properties of dense \({{\rm Ba}}_2{{\rm Co}}_9{{\rm O}}_{14}\) ceramics. J. Eur. Ceram. Soc. 37, 2615–2620 (2017)

    Article  Google Scholar 

  7. G. Constantinescu, S. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Enhancement of the high-temperature thermoelectric performance of \({{\rm Bi}}_2{{\rm Ba}}_2{{\rm Co}}_2{{\rm O}}_x\) ceramics. Scr. Mater. 68, 75–78 (2013)

    Article  Google Scholar 

  8. A.I. Klyndyuk, N.S. Krasutskaya, E.A. Chizhova, Synthesis and thermoelectric properties of ceramics based on \({{\rm Bi}}_2{{\rm Ca}}_2{{\rm Co}}_{1.7}{{\rm O}}_y\) oxide. Phys. Chem. Glas. 44, 100–107 (2018)

    Article  Google Scholar 

  9. J. Androulakis, P. Migiakis, J. Giapintzakis, \({{\rm La}}_{0.95}{{\rm Sr}}_{0.05}{{\rm CoO}}_3\): an efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099–1101 (2004)

    Article  ADS  Google Scholar 

  10. H. Kozuka, K. Yamagiwa, K. Ohbayashia, K. Koumoto, Origin of high electrical conductivity in alkaline-earth doped \(\text{ LaCoO}_3\). J. Mater. Chem. 22, 11003–11005 (2012)

    Article  Google Scholar 

  11. C. Chen, F. Giovannelli, T. Chartier, F. Delorme, Synthesis and thermoelectric properties of doubly substituted \({{\rm La}}_{0.95}{{\rm Sr}}_{0.05}{{\rm Co}}_{1-x}{{\rm Cr}}_x{{\rm O}}_3\) (0\(\le \)x\(\le \)0.5). Mater. Res. Bull. 102, 257–261 (2018)

    Article  Google Scholar 

  12. M.A. Bousnina, R. Dujardin, L. Perriere, F. Giovannelli, G. Guegan, F. Delorme, Synthesis, sintering, and thermoelectric properties of the solid solution \({{\rm La}}_{1-x}{{\rm Sr}}_x{{\rm CoO}}_{3\pm \delta }\) (0\(\le {{\rm x}}\le \)1). J. Adv. Ceram. 7, 160–168 (2018)

    Article  Google Scholar 

  13. C. Chen, F. Delorme, F. Schoenstein, M. Zaghrioui, D. Flahaut, J. Allouche, F. Giovannelli, Synthesis, sintering and thermoelectric properties of \({{\rm Co}}_{1-x}{{\rm M}}_x{{\rm O}}\) (M = Na, 0\(\le \)x\(\le \)0.07; M = Ag, 0\(\le \)x\(\le \)0.05). J. Eur. Ceram. Soc. 39, 346–351 (2019)

    Article  Google Scholar 

  14. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, High-temperature thermoelectric properties of (\({{\rm Zn}}_{1-x}{{\rm Al}}_x\))O. J. Appl. Phys. 79, 1816–1818 (1996)

    Article  ADS  Google Scholar 

  15. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Kunihito, Thermoelectrical properties of A-site substituted \({{\rm Ca}}{1-x}{{\rm Re}}_x{{\rm MnO}}_3\) system. J. Appl. Phys. 100, 4 (2006)

    Article  Google Scholar 

  16. T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: \({{\rm Sr}}_{1-x}{{\rm La}}_x{{\rm TiO}}_3\) (0 \(<\text{ x }<\)0.1). Phys. Rev. B 63, 113104 (2001)

    Article  ADS  Google Scholar 

  17. H. Muta, K. Kurosaki, S. Yamanaka, Thermoelectric properties of rare earth doped \({{\rm SrTiO}}_3\). J. Alloys Compd. 350, 292295 (2003)

    Article  Google Scholar 

  18. J. Wang, B.Y. Zhang, H.J. Kang, Y. Li, X. Yaer, J.F. Li, Q. Tan, S. Zhang, G.H. Fan, C.Y. Liu, L. Miao, D. Nan, T.M. Wang, L.D. Zhao, Record high thermoelectric performance in bulk \({{\rm SrTiO}}_3\) via nano-scale modulation doping. Nano Energy 35, 387–395 (2017)

    Article  Google Scholar 

  19. D. Srivastava, C. Norman, F. Azough, M.C. Schäfer, E. Guilmeau, D. Kepaptsoglou, Q.M. Ramasse, G. Nicotra, R. Freer, Tuning the thermoelectric properties of A-site deficient \({{\rm SrTiO}}_3\) ceramics by vacancies and carrier concentration. Phys. Chem. Chem. Phys. 18, 26475–26486 (2016)

    Article  Google Scholar 

  20. S.P. Singh, N. Kanas, T.D. Desissa, M. Johnsson, M.-A. Einarsrud, T. Norby, K. Wiik, Thermoelectric properties of A-site deficient La-doped \({{\rm SrTiO}}_3\) at 100–900 \(^{\circ }\text{ C }\) under reducing conditions. J. Eur. Ceram. 40, 401–407 (2020)

    Article  Google Scholar 

  21. S. Ohta, T. Nomura, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped \({{\rm SrTiO}}_3\) single crystals. J. Appl. Phys. 97, 034106 (2005)

    Article  ADS  Google Scholar 

  22. C. Chen, T. Zhang, R. Donelson, T. Teck Tan, S. Lia, Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of \({{\rm Sr}}_{1-1.5x}{{\rm Y}}_x{{\rm TiO}}_{3-\delta }\) (0\(\le \)x\(\le \)0.15). J. Alloys Compd. 629, 49–54 (2015)

    Article  Google Scholar 

  23. L. Zhang, T. Tosho, N. Okinaka, T. Akiyama, Thermoelectric properties of combustion synthesized and spark plasma sintered \({{\rm Sr}}_{1-x}{{\rm R}}_x{{\rm TiO}}_3\) (R=Y, La, Sm, Gd, Dy, 0\(<\)x\(\le \)0.1). Mater. Trans. 48, 2088–2093 (2007)

    Article  Google Scholar 

  24. A.M. Dehkordi, S. Bhattacharya, J. He, H.N. Alshareef, T.M. Tritt, Significant enhancement in thermoelectric properties of polycrystalline Pr-doped \({{\rm SrTiO}}_{3-\delta }\) ceramics originating from nonuniform distribution of Pr dopants. Appl. Phys. Lett. 104, 193902 (2014)

    Article  ADS  Google Scholar 

  25. C. Chen, M. Bousnina, F. Giovannelli, F. Delorme, Influence of Bi on the thermoelectric properties of \({{\rm SrTiO}}_{3-\delta }\). J. Materiomics 5, 88–93 (2019)

    Article  Google Scholar 

  26. A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate. Chem. Mater. 27, 4995–5006 (2015)

    Article  Google Scholar 

  27. N. Wang, H. He, X. Li, L. Han, C. Zhang, Enhanced thermoelectric properties of Nb-doped \({{\rm SrTiO}}_3\) polycrystalline ceramic by titanate nanotube addition. J. Alloys Compd. 506, 293–296 (2010)

    Article  Google Scholar 

  28. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Muller, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, The impact of nanostructuring on the thermal conductivity of thermoelectric \({{\rm CoSb}}_3\). Adv. Funct. Mater. 14, 1189–1196 (2004)

    Article  Google Scholar 

  29. S. Perumal, S. Roychowdhury, K. Biswas, Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in \({{\rm Ge}}_{1-x}{{\rm Bi}}_x{{\rm Te}}\). R. Soc. Chem. 3, 125–132 (2016)

    Google Scholar 

  30. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, K. Koumoto, Enhanced thermoelectric performance of Nb-doped \({{\rm SrTiO}}_3\) by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 1–5 (2013)

    Article  Google Scholar 

  31. K. Park, J.S. Son, S.I. Woo, K. Shin, M.W. Oh, S.D. Park, T. Hyeon, Colloidal synthesis and thermoelectric properties of La-doped \({{\rm SrTiO}}_3\) nanoparticles. J. Mater. Chem. 2, 4217–4224 (2014)

    Article  Google Scholar 

  32. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in \({{\rm SrTiO}}_3\). Nat. Mater. 6, 129–134 (2007)

    Article  ADS  Google Scholar 

  33. F. Giovannelli, C. Chen, P. Díaz-Chao, E. Guilmeau, F. Delorme, Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics. J. Eur. Ceram. 38, 5015–5020 (2018)

    Article  Google Scholar 

  34. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J. Phys. Chem. C 118, 4596–4606 (2014)

    Article  Google Scholar 

  35. Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney, High-figure-of-merit thermoelectric La-doped A-site-deficient \({{\rm SrTiO}}_3\) ceramics. Chem. Mater. 28, 925–935 (2016)

    Article  Google Scholar 

  36. J. Han, Q. Sun, Y. Son, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient \({{\rm SrTiO}}_3\) ceramics. J. Alloys Compd. 705, 22–27 (2017)

    Article  Google Scholar 

  37. O. Okhay, S. Zlotnik, W. Xie, K. Orlinski, M.J. Hortiguela Gallo, G. Otero-Irurueta, A.J.S. Fernandes, D.A. Pawlak, A. Weidenkaff, A. Tkach, Thermoelectric performance of Nb-doped \({{\rm SrTiO}}_3\) enhanced by reduced graphene and Sr deficiency coopération. Carbon 143, 215–222 (2019)

    Article  Google Scholar 

  38. A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J. Mater. Chem. A 5, 3909–3922 (2017)

    Article  Google Scholar 

  39. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  ADS  Google Scholar 

  40. A. Kikuchi, N. Okinaka, T. Akiyama, A large thermoelectric figure of merit of La-doped \({{\rm SrTiO}}_3\) prepared by combustion synthesis with post-spark plasma sintering. Scr. Mater. 63, 407–410 (2010)

    Article  Google Scholar 

  41. A. Kikuchi, L. Zhang, N. Okinaka, T. Tosho, T. Akiyama, Optimization of sintering temperature for maximizing dimensionless figure of merit of La-doped strontium titanate thermoelectric material in the combination of combustion synthesis with post spark plasma sintering. Mater. Trans. 51, 1919–1922 (2010)

    Article  Google Scholar 

  42. P. Roy, V. Pal, T. Mait, Effect of Spark Plasma Sintering (SPS) on the thermoelectric properties of SrTiO3: 15 at % Nb. Ceram. Int. 43, 12809–12813 (2017)

    Article  Google Scholar 

  43. M. Acharya, S.S. Jana, M. Ranjan, T. Maiti, High performance (ZT>1) n-type oxide thermoelectric composites from earth abundant materials. Nano Energy 84, 2211–2855 (2021)

    Article  Google Scholar 

  44. E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodnichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, M. Soulier, Invited article: A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of \({{\rm Co}}_{0.97}{{\rm Ni}}_{0.03}{{\rm Sb}}_3\). Rev. Sci. Instrum. 86, 011301 (2015)

    Article  ADS  Google Scholar 

  45. J. Liu, H.C. Wang, W.B. Su, C.L. Wang, J.L. Zhang, L.M. Mei, Synthesis and thermoelectric properties of \({{\rm Sr}}_{0.95}{{\rm La}}_{0.05}{{\rm TiO}}_{3-\delta }\)-\({{\rm TiO}}_2\) solid solutions. Solid State Sci. 12, 134–137 (2010)

    Article  ADS  Google Scholar 

  46. T.E. Loland, J. Sele, M. Einarsrud, P.E. Vullum, M. Johnsson, K. Wiik, Thermal conductivity of A-site cation-deficient La-substituted \({{\rm SrTiO}}_3\) produced by spark plasma sintering. Energy Harvest. Syst. 2, 63–71 (2015)

    Google Scholar 

  47. A.M. Dehkordi, S. Bhattacharya, T. Darroudi, J.W. Graff, U. Schwingenschlögl, H.N. Alshareef, T.M. Tritt, Large thermoelectric power factor in Pr-doped \(\text{ SrTiO}_{3-\delta }\) ceramics via grain-boundary-induced mobility enhancement. Chem. Mater. 26, 2478–2485 (2014)

    Article  Google Scholar 

  48. S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S. Kobayashi, M. Uno, Thermochemical and thermophysical properties of alkaline-earth perovskites. J. Nucl. Mater. 344, 61–66 (2005)

  49. A. Rocca, A. Licciulli, M. Politi, D. Diso, Rare Earth-doped SrTiO3 perovskite formation from Xerogels. ISRN Ceram. 2012, 926537 (2012)

  50. G.J. Synder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  51. J. Cao, D. Ekren, Y. Peng, F. Azough, I.A. Kinloch, R. Freer, Modulation of charge transport at grain boundaries in \({{\rm SrTiO}}_3\): toward a high thermoelectric power factor at room temperature. ACS Appl. Mater. Interfaces 13, 11879–11890 (2021)

    Article  Google Scholar 

  52. C. Wu, J. Li, Y. Fan, J. Xing, H. Gu, Z. Zhou, X. Lu, Q. Zhang, L. Wang, W. Jiang, The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient \({{\rm SrTiO}}_3\) ceramics. J. Alloys Compd. 786, 884–893 (2019)

    Article  Google Scholar 

  53. S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.-W.G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720–33723 (2014)

    Article  ADS  Google Scholar 

  54. P.C. Sharma, K.S. Dubey, G.S. Verma, Three-phonon scattering and Guthrie’s limits for its temperature dependence. Phys. Rev. B. 4, 1306–1313 (1971)

    Article  ADS  Google Scholar 

  55. F. Azough, S.S. Jackson, D. Ekren, R. Freer, M. Molinari, S.R. Yeandel, P.M. Panchmatia, S.C. Parker, D.H. Maldonado, D.M. Kepaptsoglou, Q.M. Ramasse, Concurrent La and A-site vacancy doping modulates the thermoelectric response of \({{\rm SrTiO}}_3\): experimental and computational evidence. ACS Appl. Mater. Interfaces 9, 41988–42000 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tatiana Chartier for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Bsaibess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bsaibess, E., Moitrier, F., Bourré, T. et al. High temperature spark plasma sintering, a fast and one step route to achieve dense and efficient \(\text {SrTiO}_3\)-based thermoelectric ceramics. Eur. Phys. J. Spec. Top. 231, 4195–4204 (2022). https://doi.org/10.1140/epjs/s11734-022-00575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00575-w

Navigation