Skip to main content
Log in

Structural defects effect in fine-grained MgAl\(_{{2}}\)O\(_{{4}}\) sintered ceramics: optical and RPE properties as function of microstructure

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Transparent sintered ceramics of spinel oxides compounds have attracted a lot of attention due to their expected structural stability in extreme environments. In this work, the evolution of structural defects was observed in fine-grain transparent MgAl\(_{2}\)O\(_{4}\) ceramics following consolidation of spinel powders via Spark Plasma Sintering and heat treatment under air. A dark discoloration due to a carbon contamination and partial reduction during the sintering process was suppressed via post-annealing under air. The correlated EPR and cathodoluminescence analyses showed significance of the Mn\(^{4+}\) ions reduction after consolidation of powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.E. Sickafus et al., Science 289(5480), 748–751 (2000). https://doi.org/10.1126/science.289.5480.748

    Article  ADS  Google Scholar 

  2. K.E. Sickafus et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 106, 573–578 (1995). https://doi.org/10.1016/0168-583X(95)00772-5

    Article  ADS  Google Scholar 

  3. A. Goldstein, J. Eur. Ceram. Soc. 32(11), 2869–2886 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.051

    Article  Google Scholar 

  4. I. Ganesh, Int. Mater. Rev. 58(2), 63–112 (2013). https://doi.org/10.1179/1743280412Y.0000000001

    Article  ADS  Google Scholar 

  5. Q. Li et al., J. Phys. Chem. Solids 145, 109542 (2020). https://doi.org/10.1016/j.jpcs.2020.109542

    Article  Google Scholar 

  6. Savita et al., J. Appl. Phys. 129(12), 125111 (2021). https://doi.org/10.1063/5.0045385

    Article  ADS  Google Scholar 

  7. A. Lushchik et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 435, 31–37 (2018). https://doi.org/10.1016/j.nimb.2017.10.018

    Article  ADS  Google Scholar 

  8. A. Pille et al., Ceram. Int. 45(7), 8305–8312 (2019). https://doi.org/10.1016/j.ceramint.2019.01.137

  9. E. Feldbach et al., Opt. Mater. (Amst) 55, 164–167 (2016). https://doi.org/10.1016/j.optmat.2016.03.008

    Article  ADS  Google Scholar 

  10. K. Morita et al., J. Ceram. Soc. Jpn. 123(1442), 983–988 (2015). https://doi.org/10.2109/jcersj2.123.983

    Article  Google Scholar 

  11. K. Morita et al., Acta Mater. 84, 9–19 (2015). https://doi.org/10.1016/j.actamat.2014.10.030

    Article  Google Scholar 

  12. H. Hammoud et al., Ceramics 2(4), 612–619 (2019). https://doi.org/10.3390/ceramics2040048

    Article  Google Scholar 

  13. P. Fu et al., Opt. Mater. (Amst) 36(7), 1232–1237 (2014). https://doi.org/10.1016/j.optmat.2014.02.035

    Article  ADS  Google Scholar 

  14. E. Feldbach et al., Opt. Mater. (Amst) 96, 109308 (2019). https://doi.org/10.1016/j.optmat.2019.109308

    Article  Google Scholar 

  15. G. Prieditis et al., IOP Conf. Ser. Mater. Sci. Eng. 503(1), 012021 (2019). https://doi.org/10.1088/1757-899X/503/1/012021

  16. M.G. Brik et al., J. Lumin. 177, 145–151 (2016). https://doi.org/10.1016/j.jlumin.2016.04.043

  17. D. Ramírez-Rosales et al., Solid State Commun. 118(7), 371–376 (2001). https://doi.org/10.1016/S0038-1098(01)00072-2

    Article  ADS  Google Scholar 

  18. V. Amir-Ebrahimi, J.J. Rooney, J. Mol. Catal. A Chem. 159(2), 429–432 (2000). https://doi.org/10.1016/S1381-1169(00)00208-9

    Article  Google Scholar 

  19. Y. Zhang et al., Opt. Mater. (Amst) 101, 109705 (2020). https://doi.org/10.1016/j.optmat.2020.109705

  20. E. Feldbach et al., Opt. Mater. (Amst) 96, 109308 (2019). https://doi.org/10.1016/j.optmat.2019.109308

    Article  Google Scholar 

  21. S. Sawai, T. Uchino, J. Appl. Phys. 112(10), 103523 (2012). https://doi.org/10.1063/1.4767228

  22. D. Valiev et al., Opt. Mater. (Amst) 91, 396–400 (2019). https://doi.org/10.1016/j.optmat.2019.03.049

    Article  ADS  Google Scholar 

  23. A.F. Zatsepin, J. Alloys Compd. 834, 154993 (2020). https://doi.org/10.1016/j.jallcom.2020.154993

  24. Y. Wakui et al., Mater. Res. Bull. 90, 51–58 (2017). https://doi.org/10.1016/j.materresbull.2017.02.001

    Article  Google Scholar 

  25. J.S. Shaffer et al., Phys. Rev. B 13(5), 1869–1875 (1976). https://doi.org/10.1103/PhysRevB.13.1869

    Article  ADS  Google Scholar 

  26. N. Mironova-Ulmane et al., Radiat. Meas. 90, 122–126 (2016). https://doi.org/10.1016/j.radmeas.2015.12.020

    Article  Google Scholar 

  27. A. Ibarra et al., Phys. Rev. B 44(14), 7256–7262 (1991). https://doi.org/10.1103/PhysRevB.44.7256

    Article  ADS  Google Scholar 

  28. V.A. Dutov et al., AIP Conf. Proc. 2174, 020097 (2019). https://doi.org/10.1063/1.5134248

  29. H. Ji et al., Dalton Trans. 49, 5711–5721 (2020). https://doi.org/10.1039/D0DT00931H

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200—EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. The authors are grateful to the SPS Platform Ile-de-France (France) and would like to thank B. Villeroy (ICMPE-CNRS, France) for his technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Spiridigliozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridigliozzi, H., Mercone, S., Lang, G. et al. Structural defects effect in fine-grained MgAl\(_{{2}}\)O\(_{{4}}\) sintered ceramics: optical and RPE properties as function of microstructure. Eur. Phys. J. Spec. Top. 231, 4167–4171 (2022). https://doi.org/10.1140/epjs/s11734-022-00574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00574-x

Navigation