Skip to main content
Log in

Materials under extreme pressure: combining theoretical and experimental techniques

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The application of high pressure during the synthesis of materials has a substantial impact on the properties and yield of materials. These can further make the electron more energetic for efficient hybridization. Ultimately results in unprecedented bonding, unusual stoichiometry and properties. Recent advancement computing with the first principle technique makes it possible to predict the existence of these materials under extreme pressure with simulations. The main challenge associated with exotic chemical materials is their instability at room temperatures after the release of pressure. In this work, we tried to address this problem with a greater highlight on a wide range of materials under extreme pressure and their future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data will be made immediately available based on the request.

References

  1. J.P.S. Walsh, D.E. Freedman, High-pressure synthesis: a new frontier in the search for next-generation intermetallic compounds. Acc. Chem. Res. 51(6), 1315–1323 (2018)

    Article  Google Scholar 

  2. T. Palasyuk, I. Troyan, M. Eremets, V. Drozd, S. Medvedev, P. Zaleski-Ejgierd, E. Magos-Palasyuk, H. Wang, S.A. Bonev, D. Dudenko et al., Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  3. S. Ninet, F. Datchi, P. Dumas, M. Mezouar, G. Garbarino, A. Mafety, C.J. Pickard, R.J. Needs, A.M. Saitta, Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89(17), 174103 (2014)

    Article  ADS  Google Scholar 

  4. C. Buzea, K. Robbie, Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18(1), R1 (2004)

    Article  Google Scholar 

  5. Y. Ma, Y. Li, E. Mikhail, A.R. Oganov, Transparent dense sodium. Wuli 40(8), 505–509 (2011)

    Google Scholar 

  6. J. Lv, Y. Wang, L. Zhu, Y. Ma, Predicted novel high-pressure phases of lithium. Phys. Rev. Lett. 106(1), 015503 (2011)

    Article  ADS  Google Scholar 

  7. X. Dong, A.R. Oganov, G. Qian, X.-F. Zhou, Q. Zhu, H.-T. Wang, How do chemical properties of the atoms change under pressure. arXiv preprint arXiv:1503.00230 (2015)

  8. R.E. Hummel, Understanding Materials Science: History, Properties, Applications (Springer Science & Business Media, Berlin, 2004)

    Book  Google Scholar 

  9. L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov, Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 mbar. Nat. Commun. 3(1), 1–7 (2012)

    Article  Google Scholar 

  10. L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm et al., The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525(7568), 226–229 (2015)

    Article  ADS  Google Scholar 

  11. T. Sakai, T. Yagi, H. Ohfuji, T. Irifune, Y. Ohishi, N. Hirao, Y. Suzuki, Y. Kuroda, T. Asakawa, T. Kanemura, High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam. Rev. Sci. Instrum. 86(3), 033905 (2015)

    Article  ADS  Google Scholar 

  12. T. Sakai, T. Yagi, T. Irifune, H. Kadobayashi, N. Hirao, T. Kunimoto, H. Ohfuji, S. Kawaguchi-Imada, Y. Ohishi, S. Tateno et al., High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press. Res. 38(2), 107–119 (2018)

    Article  ADS  Google Scholar 

  13. A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, M. Mezouar, Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  14. Z.S. Jenei, E.F.O. Bannon, S.T. Weir, H. Cynn, M.J. Lipp, W.J. Evans, Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun. 9(1), 1–6 (2018)

    Article  Google Scholar 

  15. T. Sakai, T. Yagi, R. Takeda, T. Hamatani, Y. Nakamoto, H. Kadobayashi, H. Mimori, S.I. Kawaguchi, N. Hirao, K. Kuramochi et al., Conical support for double-stage diamond anvil apparatus. High Press. Res. 40(1), 12–21 (2020)

    Article  ADS  Google Scholar 

  16. N. Dubrovinskaia, L. Dubrovinsky, N.A. Solopova, A. Abakumov, S. Turner, M. Hanfland, E. Bykova, M. Bykov, C. Prescher, V.B. Prakapenka et al., Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2(7), e1600341 (2016)

    Article  ADS  Google Scholar 

  17. L.H. Cohen, W. Klement Jr., G.C. Kennedy, Investigation of phase transformations at elevated temperatures and pressures by differential thermal analysis in piston-cylinder apparatus. J. Phys. Chem. Solids 27(1), 179–186 (1966)

    Article  ADS  Google Scholar 

  18. M. Shimada, Measurement of pressure at high temperatures in a piston-cylinder apparatus. Contrib. Geophys. Inst. Kyoto Univ. 11, 213–229 (1971)

    Google Scholar 

  19. P.W. Mirwald, I.C. Getting, G.C. Kennedy, Low-friction cell for piston-cylinder high-pressure apparatus. J. Geophys. Res. 80(11), 1519–1525 (1975)

    Article  ADS  Google Scholar 

  20. T.H. Green, A.E. Ringwood, A. Major, Friction effects and pressure calibration in a piston-cylinder apparatus at high pressure and temperature. J. Geophys. Res. 71(14), 3589–3594 (1966)

    Article  ADS  Google Scholar 

  21. J.C. Haygarth, I.C. Getting, G.C. Kennedy, Determination of the pressure of the barium i–ii transition with single-stage piston-cylinder apparatus. J. Appl. Phys. 38(12), 4557–4564 (1967)

    Article  ADS  Google Scholar 

  22. A.K. Kronenberg, S.H. Kirby, R.D. Aines, G.R. Rossman, Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening. J. Geophys. Res. Solid Earth 91(B12), 12723–12741 (1986)

    Article  Google Scholar 

  23. M. Rovetta, J.D. Blacic, R.L. Hervig, J.R. Holloway, Aluminum and hydrogen defects in quartz: enhanced diffusion at high pressure and high f h2. EOS Trans. Am. Geophys. Union 66, 627 (1987)

    Google Scholar 

  24. J. Gerretsen, M.S. Paterson, J. Bitmead, Improved procedures for diffusing water into quartz at high temperature and pressure. EOS Trans. Am. Geophys. Union 66, 1144 (1985)

    Google Scholar 

  25. T.N. Tingle, Retrieval of uncracked single crystals from high pressure in piston-cylinder apparatus. Am. Mineral. 73(9–10), 1195–1197 (1988)

    Google Scholar 

  26. K. Anbukumaran, C. Venkateswaran, N. Victor Jaya, S. Natarajan, Piston-cylinder apparatus for high pressure and high temperature studies, in AIP Conference Proceedings, vol. 309. (American Institute of Physics, 1994), p. 1585

  27. P.C. Burnley, I.C. Getting, Creating a high temperature environment at high pressure in a gas piston cylinder apparatus. Rev. Sci. Instrum. 83(1), 014501 (2012)

    Article  ADS  Google Scholar 

  28. A.E. Petrova, S.M. Stishov, Phase diagram of the itinerant helimagnet MNSI from high-pressure resistivity measurements and the quantum criticality problem. Phys. Rev. B 86(17), 174407 (2012)

    Article  ADS  Google Scholar 

  29. Z. Shermadini, R. Khasanov, M. Elender, G. Simutis, Z. Guguchia, K.V. Kamenev, A. Amato, A low-background piston-cylinder-type hybrid high pressure cell for muon-spin rotation/relaxation experiments. High Press. Res. 37(4), 449–464 (2017)

    Article  ADS  Google Scholar 

  30. F. Brunet, D. Vielzeuf, The farringtonite/mg 3 (po 4) 2–ii transformation; a new curve for pressure calibration in piston-cylinder apparatus. Eur. J. Mineral. 8(2), 349–354 (1996)

    Article  ADS  Google Scholar 

  31. A.H. Jones, W.M. Isbell, C.J. Maiden, Measurement of the very-high-pressure properties of materials using a light-gas gun. J. Appl. Phys. 37(9), 3493–3499 (1966)

    Article  ADS  Google Scholar 

  32. G.R. Fowles, G.E. Duvall, J. Asay, P. Bellamy, F. Feistmann, D. Grady, T. Michaels, R. Mitchell, Gas gun for impact studies. Rev. Sci. Instrum. 41(7), 984–996 (1970)

    Article  ADS  Google Scholar 

  33. A.V. Pavlenko, S.I. Balabin, O.E. Kozelkov, D.N. Kazakov, A one-stage light-gas gun for studying dynamic properties of structural materials in a range up to 40 gpa. Instrum. Exp. Tech. 56(4), 482–484 (2013)

    Article  Google Scholar 

  34. A.C. Mitchell, W.J. Nellis, Diagnostic system of the lawrence livermore national laboratory two-stage light-gas gun. Rev. Sci. Instrum. 52(3), 347–359 (1981)

    Article  ADS  Google Scholar 

  35. D. Erskine, High pressure hugoniot of sapphire, in AIP Conference Proceedings, vol. 309. (American Institute of Physics, 1994), p. 141

  36. K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, Shock hugoniot compression curve for water up to 1 gpa by using a compressed gas gun. J. Appl. Phys. 91(1), 476–482 (2002)

    Article  ADS  Google Scholar 

  37. W. Sun, X. Li, K. Hokamoto, Fabrication of graded density impactor via underwater shock wave and quasi-isentropic compression testing at two-stage gas gun facility. Appl. Phys. A 117(4), 1941–1946 (2014)

    Article  ADS  Google Scholar 

  38. M. Boustie, L. Berthe, T. De Rességuier, M. Arrigoni, Laser shock waves: fundamentals and applications, in 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications (Citeseer, 2008)

  39. P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartnicki, Experimental study of laser-driven shock waves in stainless steels. J. Appl. Phys. 84(11), 5985–5992 (1998)

    Article  ADS  Google Scholar 

  40. C.E. Bell, J.A. Landt, Laser-induced high-pressure shock waves in water. Appl. Phys. Lett. 10(2), 46–48 (1967)

    Article  ADS  Google Scholar 

  41. A.H. Clauer, J.H. Holbrook, B.P. Fairand, Effects of laser induced shock waves on metals. Shock waves and high-strain-rate phenomena in metals (1981), p. 675–702

  42. A. Ng, D. Parfeniuk, L. DaSilva, Hugoniot measurements for laser-generated shock waves in aluminum. Phys. Rev. Lett. 54(24), 2604 (1985)

    Article  ADS  Google Scholar 

  43. R. Jeanloz, P.M. Celliers, G.W. Collins, J.H. Eggert, K.K.M. Lee, R.S. McWilliams, S. Brygoo, P. Loubeyre, Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl. Acad. Sci. 104(22), 9172–9177 (2007)

    Article  ADS  Google Scholar 

  44. S.N. Luo, D.C. Swift, T.E. Tierney IV., D.L. Paisley, G.A. Kyrala, R.P. Johnson, A.A. Hauer, O. Tschauner, P.D. Asimow, Laser-induced shock waves in condensed matter: some techniques and applications. High Press. Res. 24(4), 409–422 (2004)

    Article  ADS  Google Scholar 

  45. L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 6(1), 39–43 (2007)

    Article  ADS  Google Scholar 

  46. M. Somayazulu, A. Madduri, A.F. Goncharov, O. Tschauner, P.F. McMillan, H. Mao, R.J. Hemley, Novel broken symmetry phase from n 2 o at high pressures and high temperatures. Phys. Rev. Lett. 87(13), 135504 (2001)

    Article  ADS  Google Scholar 

  47. E. Horvath-Bordon, R. Riedel, P.F. McMillan, P. Kroll, G. Miehe, P.A. van Aken, A. Zerr, P. Hoppe, O. Shebanova, I. McLaren et al., High-pressure synthesis of crystalline carbon nitride imide, c2n2 (nh). Angewandte Chemie 119(9), 1498–1502 (2007)

    Article  ADS  Google Scholar 

  48. T. Matsuoka, K. Shimizu, Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458(7235), 186–189 (2009)

    Article  ADS  Google Scholar 

  49. Y. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, V. Prakapenka, Transparent dense sodium. Nature 458(7235), 182–185 (2009)

    Article  ADS  Google Scholar 

  50. M. Gatti, I.V. Tokatly, A. Rubio, Sodium: a charge-transfer insulator at high pressures. Phys. Rev. Lett. 104(21), 216404 (2010)

    Article  ADS  Google Scholar 

  51. M. Marqués, M.I. McMahon, E. Gregoryanz, M. Hanfland, C.L. Guillaume, C.J. Pickard, G.J. Ackland, R.J. Nelmes, Crystal structures of dense lithium: a metal–semiconductor–metal transition. Phys. Rev. Lett. 106(9), 095502 (2011)

    Article  ADS  Google Scholar 

  52. P. Li, G. Gao, Y. Wang, Y. Ma, Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C 114(49), 21745–21749 (2010)

    Article  Google Scholar 

  53. Q. Zhu, A.R. Oganov, A.O. Lyakhov, Novel stable compounds in the mg-o system under high pressure. Phys. Chem. Chem. Phys. 15(20), 7696–7700 (2013)

    Article  Google Scholar 

  54. D.D. Sasselov, Extrasolar planets. Nature 451(7174), 29–31 (2008)

    Article  ADS  Google Scholar 

  55. W.B. Hubbard, Interiors of the giant planets. Science 214(4517), 145–149 (1981)

    Article  ADS  Google Scholar 

  56. C. Cavazzoni, G.L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, M. Parrinello, Superionic and metallic states of water and ammonia at giant planet conditions. Science 283(5398), 44–46 (1999)

    Article  ADS  Google Scholar 

  57. F. Datchi, S. Ninet, M. Gauthier, A.M. Saitta, B. Canny, F. Decremps, Solid ammonia at high pressure: a single-crystal X-ray diffraction study to 123 gpa. Phys. Rev. B 73(17), 174111 (2006)

    Article  ADS  Google Scholar 

  58. C.J. Pickard, R.J. Needs, Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7(10), 775–779 (2008)

    Article  ADS  Google Scholar 

  59. G.I.G. Griffiths, R.J. Needs, C.J. Pickard, High-pressure ionic and molecular phases of ammonia within density functional theory. Phys. Rev. B 86(14), 144102 (2012)

    Article  ADS  Google Scholar 

  60. T. Guillot, Interiors of giant planets inside and outside the solar system. Science 286(5437), 72–77 (1999)

    Article  ADS  Google Scholar 

  61. J.J. Lissauer, Extrasolar planets. Nature 419(6905), 355–358 (2002)

    Article  ADS  Google Scholar 

  62. M. French, T.R. Mattsson, N. Nettelmann, R. Redmer, Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79(5), 054107 (2009)

    Article  ADS  Google Scholar 

  63. M. French, T.R. Mattsson, R. Redmer, Diffusion and electrical conductivity in water at ultrahigh pressures. Phys. Rev. B 82(17), 174108 (2010)

    Article  ADS  Google Scholar 

  64. V. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University, Oxford, 2002)

    Book  Google Scholar 

  65. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, Y. Ma, High pressure partially ionic phase of water ice. Nat. Commun. 2(1), 1–5 (2011)

    Article  Google Scholar 

  66. W.J. Nellis, D.C. Hamilton, N.C. Holmes, H.B. Radousky, F.H. Ree, A.C. Mitchell, M. Nicol, The nature of the interior of uranus based on studies of planetary ices at high dynamic pressure. Science 240(4853), 779–781 (1988)

    Article  ADS  Google Scholar 

  67. Z. Liu, J. Botana, A. Hermann, S. Valdez, E. Zurek, D. Yan, H. Lin, M. Miao, Reactivity of he with ionic compounds under high pressure. Nat. Commun. 9(1), 1–10 (2018)

    ADS  Google Scholar 

Download references

Funding

P. Banerjee acknowledges financial helps received from SERB, India as TARE fellowship and TAR/2021/000032 research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Banerjee.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Institutional review board statement

Not applicable for studies not involving humans or animals.

Informed consent statement

Not applicable for studies not involving humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koneru, B., Swapnalin, J., Banerjee, P. et al. Materials under extreme pressure: combining theoretical and experimental techniques. Eur. Phys. J. Spec. Top. 231, 4221–4232 (2022). https://doi.org/10.1140/epjs/s11734-022-00569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00569-8

Navigation