Skip to main content
Log in

Design an irreversible key expansion algorithm based on 4D memristor chaotic system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The cryptanalysis results of AES show that its key expansion algorithm exists some weaknesses, such as the most round-constant are linear, and any round key can be derived from its previous or next round key, i.e., key expansion algorithm is reversible transformation. To solve these problems, we designed an irreversible key expansion algorithm based on a chaotic system. First, we introduced a 4D memristor chaotic system, and then analyzed its dynamic characteristics, such as bifurcation diagram, phase diagram, Lyapunov exponent, correlation dimension, and Kolmogorov entropy. Simulation results verified that the system exhibited complex dynamical behaviors. Further, we applied the system to design an irreversible key expansion algorithm. Experimental results verified the effectiveness of the proposed irreversible key expansion algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.N. Lorenz, Deterministic nonperiodic flow [J]. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. Arshad, M. Kassas, A. Hussein, A simple technique for studying chaos using Jerk equation with discrete time sine map [J]. Appl. Sci. 11(1), 437 (2021)

    Article  Google Scholar 

  3. J. SmItal, Chaotic Functions with zero topological entropy[J]. Trans. Am. Math. Soc. 297(1), 269–282 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. C. Li, Z. Li, W. Feng, Y. Tong et al., Dynamical behavior and image encryption application of a memristor-based circuit system [J]. Int. J. Electron. Commun. 110, 152861 (2019)

    Article  Google Scholar 

  5. Z. Hua, Y. Zhou, Dynamic parameter-control chaotic system [J]. IEEE Trans. Cybern. 46(12), 3330–3341 (2015)

    Article  Google Scholar 

  6. C. Li, H. Li, F. Li, D. Wei et al., Multiple-image encryption by using robust chaotic map in wavelet transform domain [J]. Optik 171, 277–286 (2018)

    Article  ADS  Google Scholar 

  7. C. Li, Y. Zhou, H. Li, W. Feng, J. Du, Image encryption scheme with bit-level scrambling and multiplication diffusion [J]. Multimed. Tools Appl. 80, 18479–18501 (2021)

    Article  Google Scholar 

  8. G. Kaur, K. Singh, H. Gill, Chaos-based joint speech encryption scheme using SHA-1 [J]. Multimed. Tools Appl. 80(2), 10927–10947 (2021)

    Article  Google Scholar 

  9. H. Liu, A. Kadir, C. Xu, Cryptanalysis and constructing S-Box based on chaotic map and backtracking[J]. Appl. Math. Comput. 376, 125153 (2020)

    MathSciNet  MATH  Google Scholar 

  10. M. Dimitrov, On the design of chaos-based S-Boxes [J]. IEEE Access 8, 117173–117181 (2020)

    Article  Google Scholar 

  11. Y. Zhang, D. Xiao, Double optical image encryption using discrete chirikov standard map and chaos-based fractional random transform [J]. Opt. Lasers Eng. 51(4), 472–480 (2013)

    Article  Google Scholar 

  12. J. Cho, S. Soekamtoputra, K. Choi et al., Power dissipation and area comparison of 512-bit and 1024-bit key AES [J]. Comput. Math. Appl. 65(9), 1378–1383 (2013)

    Article  Google Scholar 

  13. B. Xing, D. Wang, Y. Yang, Z. Wei, C. He, Accelerating DES and AES algorithms for a heterogeneous many-core processor [J]. Int. J. Parallel Prog. 49(3), 463–486 (2021)

    Article  Google Scholar 

  14. R. Zhao, Q. Wang, H. Wen, Design of AES algorithm based on two dimensional logistic and chebyshev chaotic Mapping [J]. Microcomput. Inform. 24(33), 43–45 (2008)

    Google Scholar 

  15. H. Chen, Y. Chen, Research on AES algorithm based on chaos [J]. J. Beijing Technol. Bus. Univ. (Natl. Sci. Ed.) 27(2), 57–60 (2009)

    Google Scholar 

  16. L. Yan, H. Li, Dynamic key AES encryption algorithm based on compound chaotic sequence [J]. Comput. Sci. 44(3), 133–138, 160 (2017)

    Google Scholar 

  17. C. Li, H. Li, W. Xie, J. Du, A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit [J]. Nonlinear Dyn. 106(1), 1041–1058 (2021)

    Article  Google Scholar 

  18. M. Guo, R. Liu, M. Dou et al., SBT-memristor-based crossbar memory circuit [J]. Chin. Phys. B 30(3), 068402 (2021)

    Article  ADS  Google Scholar 

  19. G. Dou, M. Dou, R. Liu et al., Artificial synaptic behavior of the SBT-memristor [J]. Chin. Phys. B 30(4), 078401 (2021)

    Article  ADS  Google Scholar 

  20. Y. Si, H. Liu, Y. Chen, Constructing keyed strong S-Box using an enhanced quadratic map [J]. Int. J. Bifurcat. Chaos 31(10), 2150146 (2021)

  21. Z. Hua, X. Jia, Y. Chen, Y. Shuang, Design and application of an S-box using complete Latin square [J]. Nonlinear Dyn. 104(3), 807–825 (2021)

    Article  Google Scholar 

  22. Q. Lai, Z. Wan, P. Kuate et al., Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit [J]. Commun. Nonlinear Sci. Numer. Simul. 89, 105341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Wen, S. Yu, J. Lü, Encryption algorithm based on Hadoop and non-degenerate high-dimensional discrete hyperchaotic system [J]. Acta Phys. Sinica Chin. Ed. 66(23), 76–89 (2017)

    Google Scholar 

  24. J. Richman, M. Randall, Physiological time-series analysis using approximate entropy and sample entropy [J]. Am. J. Physiol. Heart Circ. Physiol. 278(3), H2039–H2049 (2000)

    Article  Google Scholar 

  25. S. Ibrahim, A.M. Abbas, Efficient key-dependent dynamic S-Boxes based on permutated elliptic curves [J]. Inform. Sci. 558, 246–264 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Zhu, X. Tong, Z. Wang, J. Ma, A novel method of dynamic S-Box design based on combined chaotic map and fitness function [J]. Multimed. Tools Appl. 79(17), 12329–12347 (2020)

    Article  Google Scholar 

  27. F. Özkaynak, On the effect of chaotic system in performance character of chaos based S-Box design [J]. Phys. A Stat. Mech. Appl. 550, 124072 (2020)

    Article  MATH  Google Scholar 

  28. I. Hussain, A. Anees, T. Al-Maadeed et al., Construction of S-Box based on chaotic map and algebraic structures [J]. Symmetry 11(3), 351 (2019)

    Article  ADS  Google Scholar 

  29. A. Belazi, A.A.A. El-Latif, A simple yet efficient S-Box method based on chaotic sine map [J]. Optik 130, 1438–1444 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No: 61662073), the Science and Technology Program of University of Jinan (No: XKY2070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, M. & Liu, H. Design an irreversible key expansion algorithm based on 4D memristor chaotic system. Eur. Phys. J. Spec. Top. 231, 3265–3273 (2022). https://doi.org/10.1140/epjs/s11734-022-00561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00561-2

Navigation