Skip to main content
Log in

A novel locally active time-delay memristive Hopfield neural network and its application

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Hopfield neural network is an import cornerstone of neural network research. The dynamic analysis has always been a hot topic of the Hopfield neural network research. Memristor, the fourth-generation electronic device, is considered to be ideal nonlinear device applied in neural networks. In this work, we propose a novel time-delay locally active memristor, which has abundant dynamical behaviors. Characteristics of the proposed memristor are analyzed by power-off plot, DC V–I plot and pinched hysteresis loops plot. We applied the novel time-delay locally active memristor to a Hopfield neural to investigate the dynamic of the network. It is interesting that the proposed neural network has abundant dynamic behaviors, such as coexisting attractors, chaotic attractors and hyperchaotic attractors. The interesting phenomena are illustrated through bifurcation diagram, Lyapunov exponents diagram, and phase portraits. The electrical circuit of the proposed memristor and the Hopfield neural network is designed and simulated. The circuit simulation results are well consistent with the numerical simulation. Moreover, we propose an application of the Hopfield neural network to chaotic image encryption. Histogram, correlation, information entropy, and key sensitivity show that the simple image encryption scheme has high security and reliable encryption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circuit Syst. 18, 507 (1971)

    Google Scholar 

  2. D.B. Strukov, G.S. Sinder, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. B.C. Bao, Z.H. Ma, J.P. Xu, Z. Liu, Q. Xu, Int. J. Bifurcat. Chaos 21, 2629 (2011)

    Article  Google Scholar 

  4. M. Bharathwaj, Int. J. Bifurcat. Chaos 20, 1335 (2010)

    Article  Google Scholar 

  5. T. Lin, H.H.C. Lu, X.Y. Wang, X.K. Wang, Nonlinear Dyn. 77, 231–241 (2014)

    Article  Google Scholar 

  6. T. Andy, J. Phys. D Appl. Phys. 46, 093001 (2013)

    Article  Google Scholar 

  7. P. Yao, H.Q. Wu, B. Guo, J.S. Tang, Q.T. Zhang, W.Q. Zhang, J.J. Yang, H. Qian, Nature 577, 641 (2020)

    Article  ADS  Google Scholar 

  8. S. Daniel, D.C. Sotan, G. Asaf, K. Avinoam, K. Shahar, IEEE Trans. Neural Netw. Learn. Syst. 26, 2408 (2015)

    Article  MathSciNet  Google Scholar 

  9. S.P. Wen, X.D. Xie, Y. Zhang, T.W. Huang, Z.G. Zeng, Neural Netw. 103, 142 (2018)

    Article  Google Scholar 

  10. Y. Ho, G.M. Huang, P. Li, Nonvolatile memristor memory: device characteristics and design implications. Proceedings of the 2009 International Conference on Computer-Aided Design, San Jose, California, ICCAD ’09 (Association for Computing Machinery, New York, 2009), pp. 485–490. https://doi.org/10.1145/1687399.1687491

  11. X. Zhu, X.J. Yang, C.Q. Wu, N. Xiao, J.J. Wu, X. Yi, IEEE Trans. Circuits Syst. II Express Briefs 60, 682 (2013)

    Google Scholar 

  12. Z.A. Mohammed, A.H.F. Hossam, M.H. Muhammad, N.S. Khaled, Microelectron. J. 44, 176 (2013)

    Article  Google Scholar 

  13. J.J. Hopfield, Proc. Natl. Acad. Sci. 81, 3088 (1984)

    Article  ADS  Google Scholar 

  14. G. Pajares, IEEE Trans. Neural Networks 17, 1250 (2006)

    Article  Google Scholar 

  15. M. Liu, F.R. Yu, Y. Teng, V.C.M. Leung, M. Song, IEEE Trans. Veh. Technol. 67, 11008 (2018)

    Article  Google Scholar 

  16. X.Y. Wang, Z.M. Li, Opt. Lasers Eng. 115, 107 (2019)

    Article  Google Scholar 

  17. A. Babloyantz, C. Lourenco, Int. J. Neural Syst. 7, 461 (1996)

    Article  Google Scholar 

  18. Ł Laskowski, Neural Comput. Appl. 23, 2435 (2013)

    Article  Google Scholar 

  19. Y. Li, J. Li, J. Li, S.K. Duan, L.D. Wang, M.J. Guo, Neurocomputing 454, 382 (2021)

    Article  Google Scholar 

  20. B. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, Y.J. Yu, Front. Comput. Neurosci. 11, 81 (2017)

    Article  Google Scholar 

  21. Q. Xu, Z. Song, H. Bao, M. Chen, B.C. Bao, AEU-Int. J. Electron. Commun. 96(66), 66–74 (2018)

    Google Scholar 

  22. C. Chen, J. Chen, H. Bao, M. Chen, B.C. Bao, Nonlinear Dyn. 95, 3385 (2019)

    Article  Google Scholar 

  23. Z.T. Njitacke, J. Kengne, H.B. Fotsin, Int. J. Dyn. Control 7, 36 (2019)

    Article  MathSciNet  Google Scholar 

  24. H. Lin, C.H. Wang, Y. Tan, Nonlinear Dyn. 99, 2369 (2020)

    Article  Google Scholar 

  25. Y. Leng, D. Yu, Y. Hu, Chaos: Interdisciplin. J. Nonlinear Sci. 30, 033108 (2020)

    Article  Google Scholar 

  26. D. Mehdi, R. Salehi, Comput. Phys. Commun. 181, 1255 (2010)

    Article  ADS  Google Scholar 

  27. K. Hina, S.J. Liao, R.N. Mohapatra, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14, 3141 (2009)

    Article  ADS  Google Scholar 

  28. C. Kunal, M. Chakraborty, T.K. Kar, Nonlinear Anal. Hybrid Syst 5, 613 (2011)

    Article  MathSciNet  Google Scholar 

  29. R.D.V. Ramana, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  30. Y.T. Kamal, O. Ito, J. Dyan. Syst. Meas. Control 112, 133 (1990)

    Article  Google Scholar 

  31. S.N.A.P.D.S. Evesque, A.M. Annaswamy, S. Niculescu, A.P. Dowling, J. Dyan. Syst. Meas. Control 125, 186 (2003)

    Article  Google Scholar 

  32. D.P. Magee, Optimal arbitrary time-delay filtering to minimize vibration in elastic manipulator systems. ProQuest Dissertations and Theses, pp. 6524–6524 (1997). https://www.proquest.com/dissertations-theses/optimal-arbitrary-time-delay-filtering-minimize/docview/304288622/se-2?accountid=30627

  33. A.K. Agrawal, J.N. Yang, Earthquake Eng. Struct. Dynam. 29, 37 (2000)

    Article  Google Scholar 

  34. H.J. Gao, T.W. Chen, J. Lam, Automatica 44, 39 (2008)

    Article  Google Scholar 

  35. F.Z. Wang, N. Helian, S. Wu, IEEE Electron Device Lett. 31, 755 (2010)

    Article  ADS  Google Scholar 

  36. V.T. Pham, A. Buscarino, L. Fortuna, M. Frasca, Int. J. Bifurc. Chaos 23, 1350073 (2013)

    Article  Google Scholar 

  37. W. Hu, D. Ding, Y. Zhang, N. Wang, D. Liang, Optik 130, 189 (2017)

    Article  ADS  Google Scholar 

  38. R. Li, R. Ding, Int. J. Mod. Phys. B 35, 2150166 (2021)

    Article  ADS  Google Scholar 

  39. L. Chua, Radioengineering 24, 319 (2015)

    Article  Google Scholar 

  40. L.F. Shampine, S. Thompson, Appl. Numer. Math. 37(4), 44–458 (2001)

    Article  Google Scholar 

  41. A. Maus, J.C. Sprott, Commun. Nonlinear Sci. Numer. Simulat. 16, 3294–3302 (2011)

    Article  ADS  Google Scholar 

  42. Q. Xu, Z. Song, H. Bao, M. Chen, B. Bao, AEU-Int. J. Electron. Commun. 96, 66–74 (2018)

  43. S. Zhang, C. Li, J. Zheng, X. Wang, Z. Zeng, G. Chen, IEEE Trans. Circuits Syst. I: Regular Papers 68(12), 4945–4956 (2021)

    Article  Google Scholar 

  44. S. Zhang, C. Li, J. Zheng, X. Wang, Z. Zeng, X. Peng, IEEE Transactions on Industrial Electronics, https://doi.org/10.1109/TIE.2021.3099231

  45. S. Zhang, J. Zheng, X. Wang, Z. Zeng, S. He, Nonlinear Dyn. 102(4), 2821–2841 (2020)

    Article  Google Scholar 

  46. D. Biswas, T. Banerjee, Nonlinear Dyn. 83(4), 2331–2347 (2016)

    Article  Google Scholar 

  47. B. Tanmoy, D. Biswas, B.C. Sarkar, Bonfring Int. J. Power Syst. Integrat. Circuits 2, 13 (2012)

    Article  Google Scholar 

  48. B. Norouzi, S. Mirzakuchaki, Multimed. Tools Appl. 76, 13681 (2017)

    Article  Google Scholar 

  49. G. Maddodi, A. Awad, D. Awad, Multimed. Tools Appl. 77, 24701 (2018)

    Article  Google Scholar 

  50. C. Lakshmi, K. Thenmozhi, J. Rayappan, Neural Comput. Appl. 32, 11477 (2020)

    Article  Google Scholar 

  51. H. Lin, C. Wang, F. Yu, IEEE Trans. Ind. Electron. 68, 12708 (2020)

    Article  Google Scholar 

  52. C. Lakshimi, K. Thenmozhi, J.B.B. Rayappan, R. Amirtharajan, Neural Comput. Appl. 32, 11477–11489 (2020)

    Article  Google Scholar 

  53. S. Zhang, J. Zheng, X. Wang, Z. Zeng, Chaos 31, 011101 (2021)

    Article  ADS  Google Scholar 

  54. H. Bao, Z. Hua, W. Liu, B. Bao, Sci. China Technol. Sci 64, 2281–2291 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Scientific and Technological Project in Henan Province (182102210508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Ding, R. A novel locally active time-delay memristive Hopfield neural network and its application. Eur. Phys. J. Spec. Top. 231, 3005–3017 (2022). https://doi.org/10.1140/epjs/s11734-022-00560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00560-3

Navigation