Skip to main content
Log in

A novel four-lobe corsage memristor with tristability and its complex dynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper introduces a three-stable locally active memristor whose internal state equation is composed of sign functions related to internal state and voltage. The memristor has three asymptotically stable equilibrium points and a locally active region. The non-volatility and local activity of the memristor are verified by the POP (power-off plot) and the DC \(V-I\) plot, respectively. Furthermore, the proposed memristor has a petal-like continuous DC \(V-I\) curve, and thus it also is a new type of 4-lobe Chua corsage memristor. Biasing the memristor at its locally active region and connecting it in series with an inductor, a second-order oscillator is developed in this paper. The required inductance and the oscillation frequency are determined by analyzing the admittance function Y(iw,V) of memristor’s small-signal equivalent circuit. Based on Hopf bifurcation theory and the pole-zero diagram of the composite admittance function \(Y_{c}(s, Q)\), the dynamics of the resultant oscillator circuit are analyzed in detail. In addition, a third-order chaotic oscillation circuit is obtained by adding a capacitor to the second-order oscillation circuit. Its dynamical characteristics are analyzed through Lyapunov exponent spectrum, bifurcation diagram and dynamic diagram. Finally, simulation results based on Multisim are given to verify the correctness of the numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. L. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. D.B. Strukov, G.S. Snider, D.R. Stewart et al., The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  4. A.G. Radwan, M.A. Zidan, K.N. Salama, On the mathematical modeling of memristors. In: 2010 international conference on microelectronics, pp. 284–287. IEEE (2010)

  5. F. Caldarola, P. Pantano, E. Bilotta, Computation of supertrack functions for Chua’s oscillator and for Chua’s circuit with memristor. Commun. Nonlinear Sci. Numer. Simul. 94, 105568 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.L. Li, Z.Y. Li, W. Feng et al., Dynamical behavior and image encryption application of a memristor-based circuit system. AEU Int. J. Electron. Commun. 110, 152861 (2019)

  7. G. Wang, J. He, F. Yuan et al., Dynamical behaviors of a TiO\(_{2}\) memristor oscillator. Chin. Phys. Lett. 30(11) (2013)

  8. H. Chang, Y. Li, G. Chen, A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting. Chao Interdiscip. J. Nonlinear Sci. 30(4), 043110 (2020)

  9. L. Chen, Y. Zhou, F. Yang et al., Complex dynamical behavior in memristor-capacitor systems. Nonlinear Dyn. 98(1), 517–537 (2019)

    Article  Google Scholar 

  10. F. Yuan, Y. Deng, Y. Li et al., The amplitude, frequency and parameter space boosting in a memristor-meminductor-based circuit. Nonlinear Dyn. 96(1), 389–405 (2019)

    Article  MATH  Google Scholar 

  11. G. Bao, Z. Zeng, Multistability of periodic delayed recurrent neural network with memristors. Neural Comput. Appl. 23(7), 1963–1967 (2013)

    Article  Google Scholar 

  12. F. Min, Y. Cheng, L. Lu et al., Extreme multistability and antimonotonicity in a shinriki oscillator with two flux-controlled memristors. Int. J. Bifurc. Chaos 31(11), 2150167 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Min, Q. Jin, The analysis of antimonotonicity and extreme multistability for a two-memristor-based shinriki oscillator. Acta Electron. Sin. 47(11), 2263 (2019)

    Google Scholar 

  14. M. Ji’e, D. Yan, L. Wang et al., Hidden attractor and multistability in a novel memristor-based system without symmetry. Int. J. Bifurc. Chaos 31(11), 2150168 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. V.T. Pham, C.K. Volos, S. Vaidyanathan et al., A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J. Eng. Sci. Technol. Rev. 8(2) (2015)

  16. M. Messias, C. Nespoli, V.A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(02), 437–450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. I.A. Korneev, V.V. Semenov, Andronov-Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria. Chaos Interdiscip. J. Nonlinear Sci. 27(8), 081104 (2017)

  18. L. Chua, Local activity is the origin of complexity. Int. J. Bifurc. Chaos 15(11), 3435–3456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Chua, Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319 (2015)

    Article  Google Scholar 

  20. L. Chua, If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Article  ADS  Google Scholar 

  21. Y. Liang, Z. Lu, G. Wang et al., Modeling simplification and dynamic behavior of N-shaped locally-active memristor based oscillator. IEEE Access 8, 75571–75585 (2020)

    Article  Google Scholar 

  22. H. Chang, Q. Song, Y. Li et al., Unstable limit cycles and singular attractors in a two-dimensional memristor-based dynamic system. Entropy 21(4), 415 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Chang, Z. Wang, Y. Li et al., Dynamic analysis of a bistable bi-local active memristor and its associated oscillator system. Int. J. Bifurc. Chaos 28(08), 1850105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Zhu, C. Wang, Q. Deng et al., Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurc. Chaos 30(13), 2050184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Dong, G. Wang, G. Chen et al., Coexisting hidden and self-excited attractors in a locally active memristor-based circuit. Chaos Interdiscip. J. Nonlinear Sci. 30(10), 103123 (2020)

  26. J. Ying, Y. Liang, G. Wang et al., Locally active memristor based oscillators: the dynamic route from period to chaos and hyperchaos. Chaos Interdiscip. J. Nonlinear Sci. 31(6), 063114 (2021)

  27. Y. Dong, G. Wang, G. Chen et al., A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simul. 84, 105203 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Gu, G. Wang, Y. Dong et al., Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations. Chin. Phys. B 29(11), 110503 (2020)

    Article  ADS  Google Scholar 

  29. C. Li, H. Li, W. Xie et al., A S-type bistable locally-active memristor and its application in oscillator circuit (2021)

  30. Y. Liang, G. Wang, G. Chen et al., S-type locally active memristor-based periodic and chaotic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 5139–5152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Gu, G. Wang, J. Liu et al., Dynamics of a bistable current-controlled locally-active memristor. Int. J. Bifurc. Chaos 31(06), 2130018 (2021)

  32. J. Ying, Y. Liang, J. Wang et al., A tristable locally-active memristor and its complex dynamics. Chaos Solitons Fractals 148, 111038 (2021)

  33. L. Chua, Five non-volatile memristor enigmas solved. Appl. Phys. A 124(8), 1–43 (2018)

    Article  Google Scholar 

  34. Z.I. Mannan, H. Choi, H. Kim, Chua corsage memristor oscillator via Hopf bifurcation. Int. J. Bifurc. Chaos 26(04), 1630009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Z.I. Mannan, C. Yang, H. Kim, Oscillation with 4-Lobe Chua corsage memristor. IEEE Circuits Syst. Mag. 18(2), 14–27 (2018)

    Article  Google Scholar 

  36. Z.I. Mannan, C. Yang, S.P. Adhikari et al., Exact analysis and physical realization of the 6-lobe Chua corsage memristor. Complexity 2018 (2018)

  37. Z.I. Mannan, H. Choi, V. Rajamani et al., Chua corsage memristor: phase portraits, basin of attraction, and coexisting pinched hysteresis loops. Int. J. Bifurc. Chaos 27(03), 1730011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Z.I. Mannan, S.P. Adhikari, H. Kim et al., Global dynamics of Chua corsage memristor circuit family: fixed-point loci, Hopf bifurcation, and coexisting dynamic attractors. Nonlinear Dyn. 99(4), 3169–3196 (2020)

    Article  Google Scholar 

  39. Z.I. Mannan, H. Kim, Nonlinear dynamics, switching kinetics and physical realization of the family of Chua corsage memristors. Electronics 9(2), 369 (2020)

    Article  Google Scholar 

  40. S. Slesazeck, A. Ascoli, H. Maehne et al., Unfolding the threshold switching behavior of a memristor. Commun. Comput. Inf. Sci. 438, 156–164 (2014)

    MATH  Google Scholar 

  41. A. Ascoli, S. Slesazeck, R. Tetzlaff, et al., Unfolding the local activity of a memristor. In: 14th international workshop on cellular nanoscale networks and their applications (CNNA), pp. 1–2. IEEE (2014)

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No.2018AAA0103300 and the National Natural Science Foundations of China under Grant Nos. 62171401 and 62071411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, H., Wang, M. et al. A novel four-lobe corsage memristor with tristability and its complex dynamics. Eur. Phys. J. Spec. Top. 231, 3043–3058 (2022). https://doi.org/10.1140/epjs/s11734-022-00556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00556-z

Navigation