Skip to main content

Conduction heat transfer switching using magnetic Fe\(_{x}\)O\(_{y}\)-decorated carbon-based nanomaterials

Abstract

Smart windows are used to minimize overall indoor energy consumption for thermal regulation through the modulation of radiant and conducted heat. While the control of thermal radiation can be done effectively by various technologies such as electrochromic, thermochromic, photochromic, etc., the modulation of heat conduction through smart windows remains a very challenging problem to be solved. The main obstacles are the lack of an effective conduction pathway within a double-glazed window and the need for a reliable active thermal switching mechanism. In this work, we introduce a novel idea for modulating heat conduction through a smart window by building thermally conductive pathways via coatings together with a heat transfer switching channel. The thermal switch uses various Fe\(_{x}\)O\(_{y}\)-decorated carbon-based nanomaterials that can be turned ‘ON’ or ‘OFF’, thus modulating heat conduction through a window. By applying an external magnetic force, such carbon-based magnetic nanomaterials can be easily moved or aligned within the switching channel to modulate thermal conduction. In this work, Fe\(_{x}\)O\(_{y}\)-decorated carbon nanotubes (CNTs) and graphene are developed as a thermal conduction pathway, and a thermal heat switching mechanism is developed and proposed. The Fe\(_{x}\)O\(_{y}\)-decorated carbon nanotubes (CNTs) and graphene show excellent heat diffusivity as a thermal conduction pathway coating, through a 2 mm channel gap with a 40 mm distance from the heat source, whilst the thermal conduction switch proposed is shown to effectively modulate thermal conduction through it.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. D.W. Perera, N.-O. Skeie, Comparison of space heating energy consumption of residential buildings based on traditional and model-based techniques. Buildings 7, 27 (2017)

    Article  Google Scholar 

  2. D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko, Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85–98 (2015)

    Article  Google Scholar 

  3. L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008)

    Article  Google Scholar 

  4. X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei, Y. Lv, A robust Janus fibrous membrane with switchable infrared radiation properties for potential building thermal management applications. J. Mater. Chem. A 7, 8344–8352 (2019)

    Article  Google Scholar 

  5. B.P. Jelle, Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings–Measurement and calculation. Solar Energy Mater. Solar Cells 116, 291–323 (2013)

    Article  Google Scholar 

  6. M.G. Vrachopoulos, M.K. Koukou, G. Filos, C. Moraitis, Investigation of heat transfer in a triple-glazing type window at greek climate conditions, Central European. J. Eng. 3, 750–763 (2013)

    ADS  Google Scholar 

  7. S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 15, 3617–3631 (2011)

    Article  Google Scholar 

  8. S. Wang, Z. Ma, Supervisory and optimal control of building HVAC systems: A review. HVAC&R Res. 14, 3–32 (2008)

    Article  Google Scholar 

  9. D. Mariano-Hernández, L. Hernández-Callejo, A. Zorita-Lamadrid, O. Duque-Pérez, F. Santos García, A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 33, 101692 (2021)

    Article  Google Scholar 

  10. S. Kumar, R. Sheeja, A.J.S. Jospher, G. Sai Krishnan, Chandrasekar, A. AroulRaj, Energy-saving potential of a passive cooling system for thermal energy management of a residential building in Jaipur City, India. Mater. Today: Proc. 43, 1471–1477 (2021)

    Google Scholar 

  11. R. Tällberg, B.P. Jelle, R. Loonen, T. Gao, M. Hamdy, Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Solar Energy Mater. Solar Cells 200, 109828 (2019)

    Article  Google Scholar 

  12. R. Goei, A.J. Ong, T.J. Hao, L.J. Yi, L.S. Kuang, D. Mandler, S. Magdassi, A.I. Yoong Tok, Novel Nd-Mo co-doped SnO\(_{2}\)/\(\alpha \)-WO\(_{3}\) electrochromic materials (ECs) for enhanced smart window performance. Ceram. Int. 47, 18433–18442 (2021)

    Article  Google Scholar 

  13. C.G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014)

    ADS  Article  Google Scholar 

  14. S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan, Y. Long, Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021)

    Article  Google Scholar 

  15. S. Al-Qahtani, E. Aljuhani, R. Felaly, K. Alkhamis, J. Alkabli, A. Munshi, N. El-Metwaly, Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 60, 8340–8350 (2021)

    Article  Google Scholar 

  16. X. Zhao, X. Hu, J. Sun, Q. You, H. Xu, W. Liu, G. Sun, Y. Nie, W. Yao, X. Jiang, VO\(_{2}\)-based composite films with exemplary thermochromic and photochromic performance. J. Appl. Phys. 128, 185107 (2020)

    ADS  Article  Google Scholar 

  17. R. Goei, A.J. Ong, J.H. Tan, J.Y. Loke, S.K. Lua, D. Mandler, S. Magdassi, A.I. Yoong Tok, Nd-Nb Co-doped SnO\(_{2}\)/\(\alpha \)-WO\(_{3}\) Electrochromic materials: Enhanced stability and switching properties. ACS Omega 6, 26251–26261 (2021)

    Article  Google Scholar 

  18. M. Rubin, Calculating heat transfer through windows. Int. J. Energy Res. 6, 341–349 (1982)

    Article  Google Scholar 

  19. T.D. Nguyen, O. Geuli, L.P. Yeo, S. Magdassi, D. Mandler, A.I.Y. Tok, Additive-free electrophoretic deposition of graphene quantum dots thin films. Chem.-A Eur. J. 25, 16573–16581 (2019)

    Article  Google Scholar 

  20. T.D. Nguyen, L.P. Yeo, K. Si Yang, T. Chiew Kei, Z. Wang, D. Mandler, S. Magdassi, A.I.Y. Tok, Fabrication and characterization of graphene quantum dots thin film for reducing cross-sectional heat transfer through smart window. Mater. Res. Bull. 127, 110861 (2020)

    Article  Google Scholar 

  21. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)

    ADS  Article  Google Scholar 

  22. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Two-dimensional phonon transport in supported graphene. Science 328, 213 (2010)

  23. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    ADS  Article  Google Scholar 

  24. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    ADS  Article  Google Scholar 

  25. D.L. Nika, A.A. Balandin, Phonons and thermal transport in graphene and graphene-based materials. Rep. Progr. Phys. 80, 036502 (2017)

    ADS  Article  Google Scholar 

  26. L.P. Yeo, T.D. Nguyen, H. Ling, Y. Lee, D. Mandler, S. Magdassi, A.I.Y. Tok, Electrophoretic deposition of reduced graphene oxide thin films for reduction of cross-sectional heat diffusion in glass windows. J. Sci.: Adv. Mater. Dev. 4, 252–259 (2019)

    Google Scholar 

  27. C. Peniche, D. Zaldívar, M. Pazos, S. Páz, A. Bulay, J.S. Román, Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry-FTIR. J. Appl. Polym. Sci. 50, 485–493 (1993)

    Article  Google Scholar 

  28. M.I. Loría-Bastarrachea, W. Herrera-Kao, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, H. Vázquez-Torres, A. Ávila-Ortega, A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Thermal Anal. Calorim. 104, 737–742 (2011)

    Article  Google Scholar 

  29. J. Passaro, P. Russo, A. Bifulco, M.T. De Martino, V. Granata, B. Vitolo, G. Iannace, A. Vecchione, F. Marulo, F. Branda, Water resistant self-extinguishing low frequency soundproofing polyvinylpyrrolidone based electrospun blankets. Polymers (Basel) 11, 1205 (2019)

    Article  Google Scholar 

  30. S. Famiani, A.P. LaGrow, M.O. Besenhard, S. Maenosono, N.T.K. Thanh, Synthesis of fine-tuning highly magnetic Fe@Fe\(_{x}\)O\(_{y\, }\)nanoparticles through continuous injection and a study of magnetic hyperthermia. Chem. Mater. 30, 8897–8904 (2018)

    Article  Google Scholar 

  31. D.A. Petrov, C.R. Lin, R.D. Ivantsov, S.G. Ovchinnikov, S.M. Zharkov, G.Y. Yurkin, D.A. Velikanov, Y.V. Knyazev, M.S. Molokeev, Y.T. Tseng, E.S. Lin, I.S. Edelman, A.O. Baskakov, S.S. Starchikov, I.S. Lyubutin, Characterization of the iron oxide phases formed during the synthesis of core-shell Fe\(_{x}\)O\(_{y}\)@C nanoparticles modified with Ag. Nanotechnology 31, 395703 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the National Research Foundation, Prime Minister’s Office, Singapore under its Campus of Research Excellence and Technological Enterprise (CREATE) Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongqi Shi or Alfred Iing Yoong Tok.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Co-first Author: Ronn Goei, Tam D. Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goei, R., Nguyen, T.D., Zhang, X. et al. Conduction heat transfer switching using magnetic Fe\(_{x}\)O\(_{y}\)-decorated carbon-based nanomaterials. Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00543-4