Skip to main content

Advertisement

Log in

Exact solutions for MHD axisymmetric hybrid nanofluid flow and heat transfer over a permeable non-linear radially shrinking/stretching surface with mutual impacts of thermal radiation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recently, the hybrid nanofluid has been extensively utilized to improve the capabilities of heat transfer fluids that are widely employed in modern industrialized applications. In this article, the features of heat transfer of axisymmetric flow over a nonlinear shrinking or stretching surface induced by hybrid (TiO\(_{2}\)–Ag) nanofluid are scrutinized analytically. A radiation impact is incorporated in the energy equation. The nonlinear leading PDEs (partial differential equations) are improved into a form of dimensionless ODEs (ordinary differential equations) by operating nonlinear similarity variables. The outcome is obtained in a closed-form equation. The physical parameters are retrieved by the use of nonlinear transformations, which are then determined analytically to produce the exact dual solutions. The impact of these obtained physical parameters on the velocity, the friction factor as well as the temperature distribution, and the Nusselt number are scrutinized in detail. The dual solutions are obtained as a result of the shrinking surface, which has an impact on the temperature distribution. The exploration specifies that the inclusion of nanoparticles volume fractions in the convectional fluid provides a great potential in enhancing the performance of heat transfer fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.U.S Choi, J.A. Eastman, (Argonne National Lab., IL, United States, 1995)

  2. K.V. Wong, O.D. Leon, Adv. Mech. Eng. 2, 519659 (2010)

    Article  Google Scholar 

  3. R. Moghadasi, A. Rostami, A. Hemmati-Sarapardeh, Adv. Geoenergy Res. 3, 198 (2019)

    Google Scholar 

  4. M. Sheikholeslami, J. Mol. Liq. 249, 921 (2018)

    Article  Google Scholar 

  5. N.V. Ganesh, Q.M. Al-Mdallal, P.K. Kameswaran, Case Stud. Therm. Eng. 13, 100413 (2019)

    Article  Google Scholar 

  6. A. Zaib, R.U. Haq, M. Sheikholeslami, U. Khan, Phys. Scr. 95, 035005 (2020)

    Article  Google Scholar 

  7. A. Hamid, Y.-M. Chu, M.I. Khan, R.N. Kumar, R.J.P. Gowd, B.C. Prasannakumara, Int. J. Mod. Phys. B 35, 2150105 (2021)

    Article  ADS  Google Scholar 

  8. R.J.P. Gowda, R.N. Kumar, B.C. Prasannakumara, B. Nagaraja, B.J. Gireesha, J. Mol. Liq. 335, 116215 (2021)

    Article  Google Scholar 

  9. S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Exp. Therm. Fluid Sci. 38, 54 (2012)

    Article  Google Scholar 

  10. A. Moghadassi, E. Ghomi, F. Parvizian, Int. J. Therm. Sci. 92, 50 (2015)

    Article  Google Scholar 

  11. S.S.U. Devi, S.A. Devi, Can. J. Phys. 94, 490 (2016)

    Article  ADS  Google Scholar 

  12. C. Sinz, H. Woei, M. Khalis, S.A. Abbas, J. Adv. Res. Fluid Mech. Therm. Sci. 24, 1 (2016)

    Google Scholar 

  13. A.A. Minea, Int. J. Heat Mass Transf. 104, 852 (2017)

    Article  Google Scholar 

  14. S. Nadeem, N. Abbas, M.Y. Malik, Comput. Methods Prog. Biomed. 189, 105193 (2020)

    Article  Google Scholar 

  15. U. Khan, A. Zaib, S. Abu Bakar, A. Ishak, Case Stud. Therm. Eng. 26, 101150 (2021)

    Article  Google Scholar 

  16. W. Jamshed, K.S. Nisar, R.J.P. Gowda, R.N. Kumar, B.C. Prasannakumara, Phys. Scr. 96, 064006 (2021)

    Article  ADS  Google Scholar 

  17. U. Khan, A. Zaib, A. Ishak, Alex. Eng. J. 60, 5297 (2021)

    Article  Google Scholar 

  18. S. Abu Bakar, N. Md Arifin, N.S. Khashi’ie, N. Bachok, Mathematics 9, 878 (2021)

    Article  Google Scholar 

  19. A. Wakif, A. Chamkha, T. Thumma, I.L. Animasaun, R. Sehaqui, J. Therm. Anal. Calorim. 143, 1201 (2021)

    Article  Google Scholar 

  20. R.N. Kumar, R.J.P. Gowda, B.J. Gireesha, B.C. Prasannakumara, Eur. Phys. J. Spec. Top. 230, 1227 (2021)

    Article  Google Scholar 

  21. T. Hayat, M. Mustafa, M. Sajid, Z. Naturforsch. 64a, 827 (2009)

  22. K. Bhattacharyya, G.C. Layek, Int. J. Heat Mass Transf. 54, 302 (2011)

    Article  Google Scholar 

  23. K. Bhattacharyya, S. Mukopadhyay, G.C. Layek, I. Pop, Int. J. Heat Mass Transf. 55, 2945 (2012)

    Article  Google Scholar 

  24. A.S. Dogonchi, D.D. Ganji, J. Mol. Liq. 223, 521 (2016)

    Article  Google Scholar 

  25. Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, Alex. Eng. J. 57, 2187 (2018)

    Article  Google Scholar 

  26. B.C. Prasannakumara, M.G. Reddy, G.T. Thammanna, B.J. Gireesha, Nonlinear Eng. 7, 195 (2018)

    Article  ADS  Google Scholar 

  27. U. Khan, A. Zaib, A. Ishak, Mathematics 9, 921 (2021)

    Article  Google Scholar 

  28. M. Turkyilmazoglu, Int. J. Heat Mass Transf. 72, 1 (2014)

    Article  Google Scholar 

  29. K. Bhattacharyya, M.S. Uddin, G.C. Layek, Alex. Eng. J. 55, 1703 (2016)

    Article  Google Scholar 

  30. N. Freidoonimehr, A.B. Rahimi, Adv. Powder Technol. 28, 671–685 (2017)

    Article  Google Scholar 

  31. E.H. Aly, Powder Technol. 342, 528 (2019)

    Article  Google Scholar 

  32. B. Takabi, S. Salehi, Adv. Mech. Eng. 6, 1 (2014)

    Article  Google Scholar 

  33. U. Khan, I. Waini, A. Ishak, I. Pop, J. Mol. Liq. 331, 115752 (2021)

    Article  Google Scholar 

  34. T. Fang, S. Yao, J. Zhang, A. Aziz, Commun. Nonlinear Sci. Num. Simul. 15, 1831 (2010)

    Article  Google Scholar 

  35. M.M. Nandeppanavar, K. Vajravelu, M.S. Abel, M.N. Siddalingappa, Int. J. Therm. Sci. 58, 143 (2012)

    Article  Google Scholar 

  36. M. Turkyilmazoglu, Comput. Fluids 71, 426 (2013)

    Article  MathSciNet  Google Scholar 

  37. A.K.A. Hakeem, N.V. Ganesh, B. Ganga, J. Magn. Magn. Mater. 381, 243 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research groups program under grant number R.G.P.2/110/41. Also, the authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurang Zaib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, U., Zaib, A., Ishak, A. et al. Exact solutions for MHD axisymmetric hybrid nanofluid flow and heat transfer over a permeable non-linear radially shrinking/stretching surface with mutual impacts of thermal radiation. Eur. Phys. J. Spec. Top. 231, 1195–1204 (2022). https://doi.org/10.1140/epjs/s11734-022-00529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00529-2

Navigation