Skip to main content
Log in

Pulsating hydromagnetic flow and heat transfer of Jeffrey ferro-nanofluid in a porous channel: a dynamics of blood

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An analytical investigation has been carried out to study the influence of MHD pulsatile flow of Jeffrey ferro-nanofluid in a porous channel with the effect of Joule heating, viscous dissipation and heat source/sink. Blood is considered as Jeffrey fluid (base fluid) and \(\mathrm{Fe}_3\mathrm{O}_4\) (magnetite) taken as nanoparticles. The Maxwell Garnett model for thermal conductivity of nanofluid is utilized. Flow is prompted by the pulsatile pressure gradient. The governing flow equations are solved analytically using the perturbation procedure. The influences of different parameters on velocity, temperature and rate of heat transfer have been analysed. The results depicts that the velocity of nanofluid is heightened with a rise in the frequency parameter while declining with increasing magnetic field and volume fraction. The temperature of nanofluid is increased by increasing viscous dissipation. The rate of heat transfer rises with an increase in nanoparticle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(x^{*},y^{*}\) :

Dimensional Cartesian coordinates

xy :

Dimensionless Cartesian coordinates

\(u^{*}\) :

Dimensional velocity component in \(x^*\) direction (m/s)

u :

Dimensionless velocity component in x direction

\(P^{*}\) :

Dimensional pressure (Kg m\(^{-1}\) S\(^{-1}\))

P :

Dimensionless pressure

\(t^{*}\) :

Dimensional time (s)

t :

Dimensionless time

\(\mu \) :

Dynamic viscosity

\(\sigma ^{*}\) :

Stefan–Boltzmann constant (W m\(^{-2}\) K\(^{-4}\))

\(\sigma \) :

Electrical conductivity \((\Omega \mathrm{m})^{-1}\)

\(k^{*}\) :

Roseland mean absorption \((\mathrm{m}^{-1})\)

\(B_{0}\) :

A strength of an applied magnetic field

\(q_{r}\) :

Radiative heat flux (W m\(^{-2}\))

\(T_{1},T_{0}\) :

Temperatures at top and bottom walls

\(\rho \) :

Density (Kg/m\(^{3}\))

\(C_p\) :

Specific heat (J/Kg K)

\(\rho C_P\) :

Effective specific heat capacity

K :

Thermal conductivity (W/m K)

\(\phi \) :

Nanoparticle volume fraction

A :

Known constant

\(\epsilon (<<1)\) :

Positive quantity

\(T^{*}\) :

Temperature of the nanofluid (K)

h :

Distance between the walls (m)

\(\omega \) :

Frequency

H :

Frequency parameter

R :

Cross-flow Reynolds number

M :

Hartmann number

Pr:

Prandtl number

Ec:

Eckert number

Rd:

Radiation parameter

f :

Base fluid

s :

Nanoparticle

nf :

Nanofluid

References

  1. C.Y. Wang, J. App. Mech. 38, 553–555 (1971)

    Article  Google Scholar 

  2. G. Radhakrishnamacharya, M.K. Maiti, Int. J. Heat Mass Transfer. 20, 171 (1977)

    Article  Google Scholar 

  3. N. Datta, D.C. Dalal, Int. J. Multiphase Flow 21, 515–528 (1995)

    Article  Google Scholar 

  4. J.C. Misra, S.K. Ghosh, Comput. Math. Appl. 46, 947–957 (2003)

    Article  MathSciNet  Google Scholar 

  5. T. Malathy, S. Srinivas, Int. Commun. Heat Mass Transfer. 35, 681–688 (2008)

    Article  Google Scholar 

  6. C.Y. Wang, Transp. Porous. Med. 112, 409–428 (2016)

    Article  Google Scholar 

  7. S. Srinivas, C.K. Kumar, A.S. Reddy, Nonlinear Anal. Model Control 23, 213 (2018)

    Article  MathSciNet  Google Scholar 

  8. V.M. Job, S.R. Gunakala, Int. J. Appl. Comput. Math. 5, 4 (2019)

    Article  Google Scholar 

  9. P. Bharathkumar, S. Srinivas, Mater. Today Proc. 9, 320–332 (2019)

    Article  Google Scholar 

  10. P. Bitla, T.K.V. Iyengar, Eur. J. Mech. B. Fluids 48, 174–182 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.U. Haq, F. Shahzad, Q.M. Al-Mdallal, Results Phys. 7, 57–68 (2017)

    Article  ADS  Google Scholar 

  12. G.R. Kiran, V.R. Murthy, G. Rathakrishnamacharya, Mater. Today Proc. 19, 2645–2649 (2019)

    Article  Google Scholar 

  13. A. Tiwari, S.S. Chauhan, Microvasc. Res. 123, 99–110 (2019)

    Article  Google Scholar 

  14. A. Vijayalakshmi, S. Srinivas, B. Sathyanarayana, A.S. Reddy, Mater. Today Proc. 9, 306–319 (2019)

    Article  Google Scholar 

  15. S.E. Ghasemi, M. Hatami, J. Hatami, S.A.R. Sahebi, D.D. Ganji, Phys. A 443, 406–414 (2016)

    Article  MathSciNet  Google Scholar 

  16. A. Ali, M. Umar, Z. Bukhari, Z. Abbas, Results Phys. 19, 103544 (2020)

    Article  Google Scholar 

  17. S.U.S. Choi, Am. Soc. Mech. Eng. Fluids Eng. Div. FED 231, 99 (1995)

    Google Scholar 

  18. N. Akbar, S. Nadeem, N.F.M. Noor, Curr. Nanosci. 10, 432 (2014)

    Article  ADS  Google Scholar 

  19. M. Hatami, J. Hatami, D.D. Ganji, Comput. Methods Progr. Biomed. 113, 632–641 (2014)

    Article  Google Scholar 

  20. C. Zhang, L. Zheng, X. Zhang, G. Chen, Appl. Math. Model. 39, 165 (2015)

    Article  MathSciNet  Google Scholar 

  21. H. Sadaf, S. Nadeem, Comput. Methods Progr. Biomed. 131, 169–180 (2016)

    Article  Google Scholar 

  22. M. Sheikholeslami, D.D. Ganji, Alexandria Eng. J. 57, 49–60 (2016)

    Article  Google Scholar 

  23. T. Hayat, S. Nadeem, Results Phys. 7, 2317–2324 (2017)

    Article  ADS  Google Scholar 

  24. H. Thameem Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, Eur. Phys. J. Spec. Top. 228, 2531–2551 (2019)

    Article  Google Scholar 

  25. C.K. Kuamr, S. Srinivas, A. Subramanyam Reddy, J. Mech. 36, 535–549 (2020)

    Article  Google Scholar 

  26. M. Sheikholeslami, M. Hatami, D.D. Ganji, Power Tech. 246, 327–336 (2013)

    Article  Google Scholar 

  27. M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 294, 299–312 (2015)

    Article  ADS  Google Scholar 

  28. S. Das, R.N. Jana, O.D. Makinde, Defect Diffus. Forum 377, 42–61 (2017)

    Article  Google Scholar 

  29. A. Rahbari, M. Fakour, A. Hamzehnezhad, M.A. Vakilabadi, D.D. Ganji, Math. Biosci. 283, 38–47 (2017)

    Article  MathSciNet  Google Scholar 

  30. S. Srinivas, A. Vijayalakshmi, A.S. Reddy, J. Mech. 33, 395–404 (2017)

    Article  Google Scholar 

  31. T. Hayat, M. Javed, M. Imtiaz, A. Alsaedi, J. Mol. Liq. 240, 291–302 (2017)

    Article  Google Scholar 

  32. X. Sun, M. Massoudi, N. Aubry, Z. Chen, W. Wu, Int. J. Heat Mass Trans. 133, 581–595 (2019)

    Article  Google Scholar 

  33. B. Sun, Y. Guo, D. Yang, H. Li, Appl. Thermal Eng. 171, 114920 (2020)

    Article  Google Scholar 

  34. H.A. Nabwey, A. Mahdy, Results Phys. 21, 10377 (2021)

    Article  Google Scholar 

  35. G. Venkatesan, A.S. Reddy, Heat Transfer Wiley (2021). https://doi.org/10.1002/htj.22240

    Article  Google Scholar 

  36. S. Nallapu, G. Rathakrishnamacharya, Proc. Eng. 127, 185–192 (2015)

    Article  Google Scholar 

  37. N.A. Mohd Zin, I. Khan, S. Shafie, Neural Comput. Appl. 30, 3491–3507 (2018)

    Article  Google Scholar 

  38. F. Ali, S. Murtaza, N.A. Sheikh, I. Khan, Chaos Solit. Fract. 129, 1–15 (2019)

    Article  ADS  Google Scholar 

  39. M. Kumar, G.J. Reddy, O.A. Beg, J. Thermal Anal. Calorim. 138, 531–543 (2019)

    Article  Google Scholar 

  40. G. Kumaran, R. Sivaraj, A.S. Reddy, B. Rushi Kumar, V. Ramachandra Prasad, Eur. Phys. J. Spec. Top. 228, 2647–2659 (2019)

    Article  Google Scholar 

  41. A. Raju, O. Ojjela, P.K. Kambhatla, J. Anal. 28, 503–532 (2020)

    Article  MathSciNet  Google Scholar 

  42. T. Hayat, H. Ullah, B. Ahmad, M.sh. Alhodaly, Int. Commun. Heat Mass Transfer 120, 104965 (2021)

  43. G. Venkatesan, A.S. Reddy, Eur. J. Spec. Top. 230, 1475–1485 (2021)

    Article  Google Scholar 

  44. T. Chinyoka, O.D. Makinde, J. Pet. Sci. Eng. 121, 1–8 (2014)

    Article  Google Scholar 

  45. M.M. Bhatti, A. Zeeshan, R. Ellahi, Microvasc. Res. 110, 32–42 (2017)

    Article  Google Scholar 

  46. R.K. Selvi, R. Muthuraj, Ain Shams Eng. J. 9, 2503–2516 (2018)

    Article  Google Scholar 

  47. M. Waqas, S.A. Shehzad, T. Hayat, M.I. Khan, A. Alsaedi, J. Phys. Chem. Solids 133, 45–51 (2019)

    Article  ADS  Google Scholar 

  48. A. Riaz, R. Ellahi, S.M. Sait, T. Muhammad, Energy Sour. Part A Recover. Util. Environ. Eff. 00, 1 (2020)

    Google Scholar 

  49. F. Ahmed, Eur. Phys. J. Plus 136, 12 (2021)

  50. S. Rajamani, A.S. Reddy, J Process Mech. Eng. (2021). https://doi.org/10.1177/09544089211025177

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

$$\begin{aligned} B_{1}= & {} \frac{A_{2} }{A_{1} } \frac{1}{1+\lambda _{1} }, B_{2} =R, B_{3} =\frac{A_{5} }{A_{1} } M^{2} ,\\ B_{4}= & {} \frac{B_{2} +\sqrt{B_{2}^{2} +4B_{1} B_{3} } }{2B_{1} }, B_{5} =\frac{B_{2} -\sqrt{B_{2}^{2} +4B_{1} B_{3} } }{2B_{1} },\\ B_{6}= & {} \frac{H^{2} }{A_{1} B_{3} } , B_{7} =\frac{-B_{6} (e^{B_{4} } -1)}{e^{B_{4} } -e^{B_{5} } } , B_{8} =\frac{B_{6} (e^{B_{4} } -1)}{e^{B_{4} } -e^{B_{5} } } -B_{6} ,\\ B_{9}= & {} B_{1} +\frac{A_{2} }{A_{1} } \frac{\lambda i}{1+\lambda _{i} } ,\\ B_{10}= & {} \frac{A_{5} }{A_{1} } M^{2} +iH^{2} , B_{11} =\frac{B_{2} +\sqrt{B_{2}^{2} +4B_{9} B_{10} } }{2B_{9} },\\ B_{12}= & {} \frac{B_{2} -\sqrt{B_{2}^{2} +4B_{9} B_{10} } }{2B_{9} } , B_{13} =\frac{H^{2} }{A_{1} B_{10} } ,\\ B_{14}= & {} \frac{-B_{13} (e^{B11} -1)}{e^{B_{11} } -e^{B_{12} } }, B_{15} =\frac{B_{13} (e^{B_{11} } -1)}{e^{B_{11} } -e^{B_{12} } } -B_{13},\\ B_{16}= & {} \left( \frac{A_{4} }{A_{3} } +\frac{4}{3} \frac{Rd}{A_{3} } \right) \frac{1}{\Pr }, \\ B_{17}= & {} \frac{Q}{A_{3} } , B_{18} =\frac{B_{2} +\sqrt{B_{2}^{2} -4B_{16} B_{17} } }{2B_{16} } ,\\ B_{19}= & {} \frac{B_{2} -\sqrt{B_{2}^{2} -4B_{16} B_{17} } }{2B_{16} } ,\\ B_{20}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } EcB_{8}^{2} B_{4}^{2} +\frac{A_{5} }{A_{3} } M^{2} EcB_{8}^{2} \right) ,\\ B_{21}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } EcB_{7}^{2} B_{5}^{2} +\frac{A_{5} }{A_{3} } M^{2} EcB_{7}^{2} \right) ,\\ B_{22}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } 2EcB_{8} B_{4} B_{7} B_{5} +\frac{A_{5} }{A_{3} } 2M^{2} EcB_{8} B_{7} \right) ,\\ B_{23}= & {} \frac{A_{5} }{A_{3} } 2M^{2} EcB_{8} B_{6} ,\\ B_{24}= & {} \frac{A_{5} }{A_{3} } 2M^{2} EcB_{7} B_{6} , B_{25} =\frac{A_{5} }{A_{3} } M^{2} EcB_{6}^{2} , \\ B_{26}= & {} \frac{-B_{20} }{4B_{4}^{2} B_{16} -2B_{4} B_{2} +B_{17} } ,\\ B_{27}= & {} \frac{-B_{21} }{4B_{5}^{2} B_{16} -2B_{5} B_{2} +B_{17} } ,\\ B_{28}= & {} \frac{-B_{22} }{\left( B_{4} +B_{5} \right) ^{2} B_{16} -\left( B_{4} +B_{5} \right) B_{2} +B_{17} } , \\ B_{29}= & {} \frac{-B_{23} }{B_{4}^{2} B_{16} -B_{4} B_{2} +B_{17} } , B_{30} =\frac{-B_{24} }{B_{5}^{2} B_{16} -B_{5} B_{2} +B_{17} } ,\\ B_{31}= & {} \frac{-B_{25} }{B_{17} } , \\ B_{32}= & {} \frac{1}{\left( e^{B_{19} } -e^{B_{18} } \right) }\\&\left( \begin{array}{l} {1+B_{26} \left( e^{B_{18}} -e^{2B_{4} } \right) +B_{27} \left( e^{B_{18} } -e^{2B_{5} } \right) } \\ {+B_{28} \left( e^{B_{18} } -e^{(B_{4} +B_{5} )} \right) +B_{29} \left( e^{B_{18} } -e^{B_{4} } \right) } \\ {+B_{30} \left( e^{B_{18}} -e^{B_{5} } \right) +B_{31} \left( e^{B_{18}} -1\right) } \end{array}\right) ,\\ B_{33}= & {} -\left( B_{26} +B_{27} +B_{28} +B_{29} +B_{30} +B_{31} +B_{32} \right) , \\ B_{34}= & {} B_{17} -iH^{2} ,\\ B_{35}= & {} \frac{B_{2} +\sqrt{B_{2}^{2} -4B_{16} B_{34} } }{2B_{16} } , \\ B_{36}= & {} \frac{B_{2} -\sqrt{B_{2}^{2} -4B_{16} B_{34} } }{2B_{16} } , \\ B_{37}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } 2EcB_{8} B_{4} B_{15} B_{11} +\frac{A_{5} }{A_{3} } 2M^{2} EcB_{8} B_{15} \right) ,\\ B_{38}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } 2EcB_{8} B_{4} B_{14} B_{12} +\frac{A_{5} }{A_{3} } 2M^{2} EcB_{8} B_{14} \right) ,\\ B_{39}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } 2EcB_{7} B_{5} B_{15} B_{11} +\frac{A_{5} }{A_{3} } 2M^{2} EcB_{7} B_{15} \right) , \\ B_{40}= & {} \left( \frac{A_{2} }{A_{3} } \frac{1}{1+\lambda _{1} } 2EcB_{7} B_{5} B_{14} B_{12} +\frac{A_{5} }{A_{3} } 2M^{2} EcB_{7} B_{14} \right) ,\\ B_{41}= & {} \frac{A_{5} }{A_{3} } 2M^{2} EcB_{8} B_{13} , B_{42} =\frac{A_{5} }{A_{3} } 2M^{2} EcB_{7} B_{13} , \\ B_{43}= & {} \frac{A_{5} }{A_{3} } 2M^{2} EcB_{6} B_{15} , \\ B_{44}= & {} \frac{A_{5} }{A_{3} } 2M^{2} EcB_{6} B_{14} , B_{45} =\frac{A_{5} }{A_{3} } 2M^{2} EcB_{6} B_{13} , \\ B_{46}= & {} \frac{-B_{37} }{\left( B_{4} +B_{11} \right) ^{2} B_{16} -\left( B_{4} +B_{11} \right) B_{2} +B_{34} } , \\ B_{47}= & {} \frac{-B_{38} }{\left( B_{4} +B_{12} \right) ^{2} B_{16} -\left( B_{4} +B_{12} \right) B_{2} +B_{34} } , \\ B_{48}= & {} \frac{-B_{39} }{\left( B_{5} +B_{11} \right) ^{2} B_{16} -\left( B_{5} +B_{11} \right) B_{2} +B_{34} } ,\\ B_{49}= & {} \frac{-B_{40} }{\left( B_{5} +B_{12} \right) ^{2} B_{16} -\left( B_{5} +B_{12} \right) B_{2} +B_{34} } ,\\ B_{50}= & {} \frac{-B_{41} }{B_{4} {}^{2} B_{16} -B_{4} B_{2} +B_{34} } , \\ B_{51}= & {} \frac{-B_{42} }{B_{5} {}^{2} B_{16} -B_{5} B_{2} +B_{34} },\\ B_{52}= & {} \frac{-B_{43} }{B_{11} {}^{2} B_{16} -B_{11} B_{2} +B_{34} } ,\\ B_{53}= & {} \frac{-B_{44} }{B_{12} {}^{2} B_{16} -B_{12} B_{2} +B_{34} } , \\ B_{54}= & {} \frac{-B_{45} }{B_{34} } , \\ B_{55}= & {} \frac{1}{\left( e^{B_{36} } -e^{B_{35} } \right) }\\&\left( \begin{array}{l} {B_{46} \left( e^{B_{35} } -e^{\left( B_{4} +B_{11} \right) } \right) +B_{47} \left( e^{B_{35} } -e^{\left( B_{4} +B_{12} \right) } \right) } \\ {+B_{48} \left( e^{B_{35} } -e^{\left( B_{5} +B_{11} \right) } \right) +B_{49} \left( e^{B_{35} } -e^{\left( B_{5} +B_{12} \right) } \right) } \\ {+B_{50} \left( e^{B_{35} } -e^{B_{4} } \right) +B_{51} \left( e^{B_{35} } -e^{B_{5} } \right) } \\ {+B_{52} \left( e^{B_{35} } -e^{B11} \right) +B_{53} \left( e^{B_{35} } -e^{B_{12} } \right) } \\ {+B_{54} \left( e^{B_{35} } -1\right) } \end{array}\right) ,\\ B_{56}= & {} -\left( B_{46} +B_{47} +B_{48} +B_{49} +B_{50} +B_{51} +B_{52} +B_{53}\right. \\&\left. +B_{54} +B_{55} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamizharasan, T., Reddy, A.S. Pulsating hydromagnetic flow and heat transfer of Jeffrey ferro-nanofluid in a porous channel: a dynamics of blood. Eur. Phys. J. Spec. Top. 231, 1205–1214 (2022). https://doi.org/10.1140/epjs/s11734-022-00528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00528-3

Navigation