Skip to main content

Advertisement

Log in

Controlling chaos for energy harvesting via digital extended time-delay feedback

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Chaotic vibrations may appear in nonlinear energy harvesting systems, which can be problematic when using the recovered power, as it may require an extra expenditure of energy to rectify the voltage signal or reduce the harvesting process efficiency when charging the battery. Both cases can derail the energy harvester’s functionality. An alternative in this situation is to explore chaos control to stabilize the system dynamics so that the recovered voltage signal is regular and more suitable for use in the applications of interest. This paper address this problem employing an extended delayed feedback method that combines a displacement actuator and a digital controller to implement the control mechanism. The control strategy is mathematically formulated and tested in a bistable energy harvesting system that often operates in a chaotic regime. The controller shows itself capable of stabilizing the chaotic dynamics at a very low energetic cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting, 1st edn. (Wiley, New Jersey, 2011)

    Book  Google Scholar 

  2. S. Beeby, Z. Cao, A. Almussallam, in Multidisciplinary Know-How for Smart-Textiles Developers, ed. by T. Kirstein (Woodhead Publishing, 2013), pp. 306–328. https://doi.org/10.1533/9780857093530.2.306.

  3. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  ADS  Google Scholar 

  4. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009). https://doi.org/10.1063/1.3159815

    Article  ADS  Google Scholar 

  5. A. Erturk, D.J. Inman, J. Sound Vib. 330, 2339 (2011). https://doi.org/10.1016/j.jsv.2010.11.018

    Article  ADS  Google Scholar 

  6. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22(2), 023001 (2013). https://doi.org/10.1088/0964-1726/22/2/023001

    Article  ADS  Google Scholar 

  7. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014). https://doi.org/10.1016/j.apenergy.2014.07.077

    Article  Google Scholar 

  8. V.G. Lopes, J.V.L.L. Peterson, A. Cunha Jr, in 24th ABCM International Congress of Mechanical Engineering (Curitiba, Brazil, 2017)

  9. V.G. Lopes, J.V.L.L. Peterson, A. Cunha Jr, in XXXVII Congresso Nacional de Matemática Aplicada e Computacional (São José dos Campos, Brazil, 2017)

  10. V. Lopes, J. Peterson, A. Cunha Jr., Topics in Nonlinear Mechanics and Physics, vol. 228 (Springer, Singapore, 2019), pp. 71–88

    Book  Google Scholar 

  11. A. Erturk, D. Inman, J. Intell. Mater. Syst. Struct. 19(11), 1311 (2008). https://doi.org/10.1177/1045389X07085639

    Article  Google Scholar 

  12. A. Erturk, D.J. Inman, J. Vibr. Acoust. 130(4), 041002 (2008). https://doi.org/10.1115/1.2890402

    Article  Google Scholar 

  13. A. Erturk, D.J. Inman, Smart Mater. Struct. 17(6), 065016 (2008). https://doi.org/10.1088/0964-1726/17/6/065016

    Article  ADS  Google Scholar 

  14. A. Erturk, D.J. Inman, Smart Mater. Struct. 18(2), 025009 (2009). https://doi.org/10.1088/0964-1726/18/2/025009

    Article  ADS  Google Scholar 

  15. O. Bilgen, Y. Wang, D.J. Inman, Mech. Syst. Signal Process. 27, 763 (2012). https://doi.org/10.1016/j.ymssp.2011.09.002

    Article  ADS  Google Scholar 

  16. M. Lumentut, I. Howard, Mech. Syst. Signal Process. 36(1), 66 (2013). https://doi.org/10.1016/j.ymssp.2011.07.010. Piezoelectric Technology

  17. S.R. Anton, A. Erturk, D.J. Inman, J. Aircr. 49(1), 292 (2012). https://doi.org/10.2514/1.C031542

    Article  Google Scholar 

  18. Y. Wang, D.J. Inman, J. Compos. Mater. 47(1), 125 (2013). https://doi.org/10.1177/0021998312448677

    Article  ADS  Google Scholar 

  19. Y. Wang, Z. Yang, P. Li, D. Cao, W. Huang, D.J. Inman, Nano Energy 75, 104853 (2020). https://doi.org/10.1016/j.nanoen.2020.104853

    Article  Google Scholar 

  20. M.F. Daqaq, R.S. Crespo, S. Ha, Nonlinear Dyn. 99, 1525 (2020). https://doi.org/10.1007/s11071-019-05372-0

    Article  Google Scholar 

  21. E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990). https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Kumar, S.F. Ali, A. Arockiarajan, IFAC-PapersOnLine. 4th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2016 49(1), 35 (2016). https://doi.org/10.1016/j.ifacol.2016.03.025

  23. L. de la Roca, J.V.L.L. Peterson, M. P, A. Cunha Jr, in 25th International Congress of Mechanical Engineering (Uberlândia, Brazil, 2019)

  24. W.O.V. Barbosa, A.S. De Paula, M.A. Savi, D.J. Inman, Eur. Phys. J. Spec. Top. 224, 2787 (2015). https://doi.org/10.1140/epjst/e2015-02589-1

    Article  Google Scholar 

  25. M.F. Daqaq, R. Masana, A. Erturk, D. Dane Quinn, Appl. Mech. Rev 66(4) (2014). https://doi.org/10.1115/1.4026278

  26. K. Pyragas, Phys. Lett. A 206(5), 323 (1995). https://doi.org/10.1016/0375-9601(95)00654-L

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Bleich, J. Socolar, Phys. Lett. A 210(1), 87 (1996). https://doi.org/10.1016/0375-9601(95)00827-6

    Article  ADS  Google Scholar 

  28. A.S. de Paula, M.A. Savi, Int. J. Non-Linear Mech. 46(8), 1076 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.04.031

    Article  Google Scholar 

  29. S.C. Stanton, B.A. Owens, B.P. Mann, J. Sound Vib. 331(15), 3617 (2012). https://doi.org/10.1016/j.jsv.2012.03.012

    Article  ADS  Google Scholar 

  30. G.A. Gottwald, I. Melbourne, in Chaos Detection and Predictability, Springer Lecture Notes in Physics, vol. 915, ed. by C. Skokos, G.A. Gottwald, J. Laskar (Springer, 2016). https://doi.org/10.1007/978-3-662-48410-4

  31. A. Cunha Jr., Nonlinear Dyn. 103, 137 (2021). https://doi.org/10.1007/s11071-020-06109-0

    Article  Google Scholar 

  32. J.P. Norenberg, A. Cunha Jr, , S. da Silva, P.S. Varoto. Global sensitivity analysis of (a)symmetric energy harvesters (2021)

  33. J.P. Norenberg, J.V. Peterson, V.G. Lopes, R. Luo, L. de la Roca, M. Pereira, J.G. Telles Ribeiro, A. Cunha, Softw. Impacts 10, 100161 (2021). https://doi.org/10.1016/j.simpa.2021.100161

    Article  Google Scholar 

Download references

Acknowledgements

This research received financial support from the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the Carlos Chagas Filho Research Foundation of Rio de Janeiro State (FAPERJ) under the following grants: 211.304/2015, 210.021/2018, 210.167/2019, 211.037/2019 and 201.294/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Americo Cunha Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telles Ribeiro, J.G., Pereira, M., Cunha, A. et al. Controlling chaos for energy harvesting via digital extended time-delay feedback. Eur. Phys. J. Spec. Top. 231, 1485–1490 (2022). https://doi.org/10.1140/epjs/s11734-022-00503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00503-y

Navigation