Skip to main content

Advertisement

Log in

Energy harvesting efficiency of a quasi-zero stiffness energy harvester

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown numerically that an increase in equivalent stiffness of the quasi-zero stiffness system limits the potential barrier width. On the other hand, increased the spacing between compensating springs results in increased barrier width. Simulation results of the quasi-zero stiffness system are compared with those obtained for a triple-well system with permanent magnets. Based on mathematical models, multi-color diagrams depicting the largest Lyapunov exponent are plotted. The effect of selected values of external excitation frequency and amplitude on the efficiency of energy harvesting is determined. The rms value of time sequence is taken as a measure of the energy harvesting efficiency. Obtained numerical results are plotted as phase trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not available.

References

  1. P. Kim, Y.J. Yoon, J. Seok, J. Nonlinear Dyn. 83, 182–1854 (2016)

    Article  Google Scholar 

  2. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, J. Intell. Mater. Syst. Struct. 23, 1505–1521 (2012)

    Article  Google Scholar 

  3. P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, T.C. Green, Sens. Actuators, A 115, 523–529 (2004)

    Article  Google Scholar 

  4. Y.S. Kim, J. Magn. 20, 252–257 (2015)

    Article  Google Scholar 

  5. D. Younesian, M.R. Alam, Appl. Energy 197, 292–302 (2017)

    Article  Google Scholar 

  6. Z. Xie, C.A. Kitio Kwuimy, T. Wang, X. Ding, W. Huang, Eur. Phys. J. Plus 134, 1–10 (2019)

    Article  Google Scholar 

  7. S.M. Shahruz, J. Sound Vib. 292, 987–998 (2006)

    Article  ADS  Google Scholar 

  8. G. Litak, M.I. Friswell, C.A. Kitio Kwuimy, S. Adhikari, M. Borowiec, Theor. Appl. Mech. Lett. 2, 043009 (2012)

    Article  Google Scholar 

  9. A. Granados, Phys. D 351–352, 14–29 (2017)

    Article  MathSciNet  Google Scholar 

  10. I.H. Kim, H.J. Jung, B.M. Lee, S.J. Jang, Appl. Phys. Lett. 98, 214102 (2011)

    Article  ADS  Google Scholar 

  11. A.N. Kadjie, P. Woafo, Theor. Appl. Mech. Lett. 4, 063001 (2014)

    Article  Google Scholar 

  12. P.V. Malaji, S.F. Ali, S. Adhikari, M.I. Friswell, Proced. Eng. 144, 621–628 (2016)

    Article  Google Scholar 

  13. R. Kumar, S. Gupta, S.F. Ali, Mech. Syst. Signal Process. 124, 49–64 (2019)

    Article  ADS  Google Scholar 

  14. M. Gao, Y. Wang, Y. Wang, P. Wang, Appl. Energy 220, 856–875 (2018)

    Article  Google Scholar 

  15. A. Erturk, D. Inman, J. Sound Vib. 1, 16 (2009)

    Google Scholar 

  16. D. Liu, Y. Xu, J. Li, J. Sound Vib. 399, 182–196 (2017)

    Article  ADS  Google Scholar 

  17. Z. Zhou, W. Qin, P. Zhu, Mech. Syst. Signal Process. 84, 158–168 (2017)

    Article  ADS  Google Scholar 

  18. J. Cao, S. Zhou, W. Wang, J. Lin, Appl. Phys. Lett. 106, 173903 (2015)

    Article  ADS  Google Scholar 

  19. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33–39 (2015)

    Article  Google Scholar 

  20. S. Zhou, L. Zuo, Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Z. Zhou, W. Qin, P. Zhu, AIP Adv. 6, 025022 (2016)

    Article  ADS  Google Scholar 

  22. D. Huang, S. Zhou, G. Litak, Commun. Nonlinear Sci. Numer. Simul. 69, 270–286 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z. Zhou, W. Qin, Y. Yang, P. Zhu, Sens. Actuators A 265, 297–305 (2017)

  24. H.J. Ahn, J. Mech. Sci. Technol. 22, 2357–2364 (2008)

    Article  Google Scholar 

  25. T.D. Le, K.K. Ahn, J. Sound Vib. 330, 6311–6335 (2011)

    Article  ADS  Google Scholar 

  26. A. Carrella, M.J. Brennan, I. Kovacic, T.P. Waters, J. Sound Vib. 322, 707–717 (2009)

    Article  ADS  Google Scholar 

  27. I. Kovacic, M.J. Brennan, B. Lineton, J. Sound Vib. 325, 870–883 (2009)

    Article  ADS  Google Scholar 

  28. P.M. Alabuzhev, Vibration Protection and Measuring Systems with Quasi-Zero Stiffness (CRC Press, New York, 1989)

    Google Scholar 

  29. F. Niu, L.S. Meng, W.J. Wu, J.G. Sun, W.H. Su, G. Meng, Z.S. Rao, Appl. Mech. Mater. 397–400, 295–303 (2013)

    Article  Google Scholar 

  30. M. Qingguo, Y. Xuefeng, L. Wei, L. En, S. Lianchao, Shock Vib. 9, 1–9 (2017)

    Google Scholar 

  31. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  ADS  Google Scholar 

  32. H. Kantz, Phys. Lett. A 185, 77–81 (1994)

    Article  ADS  Google Scholar 

  33. M. Sandri, Math. J. 6, 78–84 (1996)

    Google Scholar 

  34. A. Stefanski, A. Dabrowski, T. Kapitaniak, Chaos Solitons Fractals 23, 1651–9 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the program of the Ministry of Science and Higher Education in Poland under the project DIALOG 0019/DLG/2019/10 in the years 2019-2021.

Author information

Authors and Affiliations

Authors

Contributions

JM: conceived and designed the analysis, collected the data, contributed analysis tools, performed the analysis, and wrote the paper; DG: conceived and designed the analysis, collected the data, contributed analysis tools, performed the analysis, and wrote the paper; GL: performed the analysis interpretation and co-wrote the paper; PW: performed the analysis interpretation and co-wrote the paper; SZ: scientific consultation and discussions.

Corresponding author

Correspondence to Piotr Wolszczak.

Ethics declarations

Competing interests

Lack of significant financial or non-financial competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margielewicz, J., Gąska, D., Litak, G. et al. Energy harvesting efficiency of a quasi-zero stiffness energy harvester. Eur. Phys. J. Spec. Top. 231, 1557–1565 (2022). https://doi.org/10.1140/epjs/s11734-022-00500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00500-1

Navigation