Skip to main content
Log in

Influence of asymmetric potential on multiple solutions of the bi-stable piezoelectric harvester

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Influence of potential well asymmetry on the dynamics of magneto-elastic and piezo-magneto-elastic harvesters with symmetric and asymmetric bi-stable potential wells are investigated in this article. An autonomous algorithm is developed which categorizes the response obtained under different harmonic excitations and initial conditions into seven unique-primary attractor solutions. Influence of two small and two moderate levels of asymmetry in potential well is visualized at the different excitation frequencies through the attractor basins and largest Lyapunov exponent of the solutions. The results of the numerical investigations prove that small and moderate levels of asymmetry considered in this investigations have insignificant influence on the desirable cross-well periodic solution. Also, under small asymmetry levels, the cross-well periodic solutions preferably transform into other cross-well solutions only, viz. cross-well subharmonic and chaotic solutions, if attainable. In addition, these asymmetry levels are beneficial in restraining the chaos-prone solutions and even boost up the basin areas of the cross-well periodic solution. A reduction in chaos-prone responses not only implies a simplified and efficient energy harvesting circuitry, but also results in an improved life expectancy of the transduction material as the instances of stress reversals are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.K. Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

    Article  Google Scholar 

  2. P.V. Malaji, S.F. Ali, Analysis of energy harvesting from multiple pendulums with and without mechanical coupling. Eur. Phys. J. Spec. Top. 224(14), 2823–2838 (2015)

    Article  Google Scholar 

  3. S. Roundy, P. K. Wright, and K. S. J. Pister. Micro-electrostatic vibration-to-electricity converters. in ASME 2002 International Mechanical Engineering Congress and Exposition (New Orleans, Louisiana, 2002), pp. 487–496

  4. S.G. Kim, S. Priya, I. Kanno, Piezoelectric MEMS for energy harvesting. MRS Bull. 37(11), 1039–1050 (2012)

    Article  Google Scholar 

  5. T. Lafont, L. Gimeno, J. Delamare, G.A. Lebedev, D.I. Zakharov, B. Viala, O. Cugat, N. Galopin, L. Garbuio, O. Geoffroy, Magnetostrictive-piezoelectric composite structures for energy harvesting. J. Micromech. Microeng. 22(9), 094009 (2012)

    Article  ADS  Google Scholar 

  6. R. Kumar, S. Gupta, S.F. Ali, Energy harvesting from chaos in base excited double pendulum. Mech. Syst. Signal Process. 124, 49–64 (2019)

    Article  ADS  Google Scholar 

  7. V.R. Challa, M.G. Prasad, Y. Shi, F.T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17(1), 015035 (2008)

    Article  ADS  Google Scholar 

  8. C. Peters, D. Maurath, W. Schock, F. Mezger, Y. Manoli, A closed-loop wide-range tunable mechanical resonator for energy harvesting systems. J. Micromech. Microeng. 19(9), 094004 (2009)

    Article  ADS  Google Scholar 

  9. P.V. Malaji, S.F. Ali, Broadband energy harvesting with mechanically coupled harvesters. Sens. Actuators A Phys. 255, 1–9 (2017)

    Article  Google Scholar 

  10. L. Tang, Y. Yang, C.K. Soh, Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  11. A.M. Giri, S.F. Ali, A. Arockiarajan, Dynamics of symmetric and asymmetric potential well-based piezoelectric harvesters: A comprehensive review. J. Intell. Mater. Syst. Struct. 32(17), 1881–1947 (2021)

    Article  Google Scholar 

  12. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(7), 075022 (2011)

    Article  ADS  Google Scholar 

  13. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  14. A. Syta, G. Litak, M.I. Friswell, S. Adhikari, Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester. Eur. Phys. J. B 89(4), 99 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Aravindan , S. Faruque Ali. Exploring 1:3 internal resonance for broadband piezoelectric energy harvesting. Mech. Syst. Signal Process. 153, 107493 (2021). (ISSN 0888-3270)

  16. G. Litak, M.I. Friswell, S. Adhikari, Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  ADS  Google Scholar 

  17. K.A. Kumar, S.F. Ali, A. Arockiarajan, Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization. Eur. Phys. J. Spec. Top. 224(14–15), 2803–2822 (2015)

    Article  Google Scholar 

  18. J. Cao, W. Wang, S. Zhou, D.J. Inman, J. Lin, Nonlinear time-varying potential bistable energy harvesting from human motion. Appl. Phys. Lett. 107(14), 143904 (2015)

    Article  ADS  Google Scholar 

  19. W. Wang, J. Cao, C.R. Bowen, G. Litak, Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. Eur. Phys. J. B 91(10), 254 (2018)

    Article  ADS  Google Scholar 

  20. Q. He, M.F. Daqaq, Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 15(333), 3479–3489 (2014)

    Article  ADS  Google Scholar 

  21. A. Kumar, S.F. Ali, A. Arockiarajan, Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting. Appl. Phys. Lett. 112(23), 233901 (2018)

    Article  ADS  Google Scholar 

  22. J. Li, Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling. Phys. Rev. E 66(3), 031104 (2002)

    Article  ADS  Google Scholar 

  23. S. Zhou, L. Zuo, Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  24. X. Mei, S. Zhou, Z. Yang, T. Kaizuka, K. Nakano, The benefits of an asymmetric tri-stable energy harvester in low-frequency rotational motion. Appl. Phys. Express 12(5), 057002 (2019)

    Article  ADS  Google Scholar 

  25. J. Iwaniec, G. Litak, M. Iwaniec, J. Margielewicz, D. Gaska, M. Melnyk, W. Zabierowski, Response identification in a vibration energy-harvesting system with quasi-zero stiffness and two potential wells. Energies 14(13), 3926 (2021)

    Article  Google Scholar 

  26. F.C. Moon, P.J. Holmes, A magnetoelastic strange attractor. J. Sound Vib. 65(2), 275–296 (1979)

    Article  ADS  Google Scholar 

  27. K.A. Kumar, S.F. Ali, A. Arockiarajan, Magneto-elastic oscillator: Modeling and analysis with nonlinear magnetic interaction. J. Sound Vib. 393, 265–284 (2017)

    Article  ADS  Google Scholar 

  28. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Broadband tristable energy harvester: Modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  29. W. Wang, J. Cao, C.R. Bowen, Y. Zhang, J. Lin, Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn. 94(2), 1183–1194 (2018)

    Article  Google Scholar 

  30. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books Publishing, Reading, 1994)

Download references

Acknowledgements

A. Arockiarajan would like to acknowledge Indian Institute of Technology Madras for providing financial aid under Materials and manufacturing for Futuristic mobility (Project no. SB20210850MMMHRD008275) through the Institute of Eminence. The authors acknowledge use of computing resources at HPCE, IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arockiarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, A.M., Ali, S.F. & Arockiarajan, A. Influence of asymmetric potential on multiple solutions of the bi-stable piezoelectric harvester. Eur. Phys. J. Spec. Top. 231, 1443–1464 (2022). https://doi.org/10.1140/epjs/s11734-022-00496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00496-8

Navigation