Skip to main content

Advertisement

Log in

Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An investigation is carried out for the purpose of simultaneously controlling a base-excited dynamical system and enhancing the effectiveness of a piezoelectric energy harvesting absorber. Amplitude absorbers are included to improve the energy harvested by the absorber with the possibility of activating broadband resonant regions to increase the operable range of the absorber. This study optimizes the stoppers’ ability for the energy harvesting absorber to generate energy by investigating asymmetric gap and stiffness configurations. Medium stiffnesses of \(5\times {10}^{4}\, {\text {N/m}}\) and \(1\times {10}^{5}\, {\text {N/m}}\) show significant impact on the primary system’s dynamics and improvement in the level of the harvested power for the absorber. A solo stopper configuration when the gap distance is \(0.02\, {\text {m}}\) improves 29% in peak power and 9% in average power over the symmetrical case. Additionally, an asymmetric stiffness configuration when one of the stiffnesses is \(1\times {10}^{5}\, {\text {N/m}}\) and a gap size of \(0.02\, {\text {m}}\) indicates an improvement of 25% and 8% for peak and average harvested power, respectively, and the second stopper’s stiffness is \(5\times {10}^{3}\, {\text {N/m}}\). Hard stopper configurations shows improvements with both asymmetric cases, but not enough improvements to outperform the system without amplitude stoppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering (Prentice Hall. Inc., Upper Saddle River, 1995)

    MATH  Google Scholar 

  2. K.Y. Billah, R.H. Scanlan, Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59(2), 118–124 (1991)

    Article  ADS  Google Scholar 

  3. E.E.M. Diaz, F.N. Moreno, J. Mohammadi, Investigation of common causes of bridge collapse in Colombia. Pract. Period. Struct. Des. Constr. 14(4), 194–200 (2009)

    Article  Google Scholar 

  4. F.S. Hover, H. Tvedt, M.S. Triantafyllou, Vortex-induced vibrations of a cylinder with tripping wires. J. Fluid Mech. 448, 175–195 (2001)

    Article  ADS  Google Scholar 

  5. H. Baek, G.E. Karniadakis, Suppressing vortex-induced vibrations via passive means. J. Fluids Struct. 25(5), 848–866 (2009)

    Article  ADS  Google Scholar 

  6. J. Høgsberg, M.L. Brodersen, Hybrid viscous damper with filtered integral force feedback control. J. Vib. Control 22(6), 1645–1656 (2016)

    Article  MathSciNet  Google Scholar 

  7. C.M. Pappalardo, D. Guida, Development of a new inertial-based vibration absorber for the active vibration control of flexible structures. Eng. Lett. 26(3), 372–385 (2018)

  8. N. Olgac, B. Holm-Hansen, Tunable active vibration absorber: the delayed resonator. J Dyn Syst Meas Contr 117, 513–519 (1995)

    Article  Google Scholar 

  9. O. Fischer, Wind-excited vibrations—solution by passive dynamic vibration absorbers of different types. J. Wind Eng. Ind. Aerodyn. 95(9–11), 1028–1039 (2007)

    Article  Google Scholar 

  10. M.N. Hadi, Y. Arfiadi, Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)

    Article  Google Scholar 

  11. N.A. Alexander, F. Schilder, Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1–2), 445–462 (2009)

    Article  ADS  Google Scholar 

  12. Z. Shu, S. Li, J. Zhang, M. He, Optimum seismic design of a power plant building with pendulum tuned mass damper system by its heavy suspended buckets. Eng. Struct. 136, 114–132 (2017)

    Article  Google Scholar 

  13. L. Wang, W. Shi, Y. Zhou, Study on self-adjustable variable pendulum tuned mass damper. Struct. Des. Tall Spec. Build. 28(1), e1561 (2019)

    Article  Google Scholar 

  14. D. Poon, S.S. Shieh, L.M. Joseph, C. Chang, Structural design of Taipei 101, the world’s tallest building, in Proceedings of the CTBUH 2004 Seoul Conference, Seoul, Korea (2004, October), pp. 271-278

  15. C. Sun, V. Jahangiri, Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper. Mech. Syst. Signal Process. 105, 338–360 (2018)

    Article  ADS  Google Scholar 

  16. M.D. Christie, S. Sun, L. Deng, D.H. Ning, H. Du, S.W. Zhang, W.H. Li, A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression. Mech. Syst. Signal Process. 116, 530–544 (2019)

    Article  ADS  Google Scholar 

  17. J.S. Hwang, J. Kim, Y.M. Kim, Rotational inertia dampers with toggle bracing for vibration control of a building structure. Eng. Struct. 29(6), 1201–1208 (2007)

    Article  Google Scholar 

  18. H. Garrido, O. Curadelli, D. Ambrosini, Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper. Eng. Struct. 56, 2149–2153 (2013)

    Article  Google Scholar 

  19. B. Yang, C. Lee, W. Xiang, J. Xie, J.H. He, R.K. Kotlanka, H. Feng, Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 19(3), 035001 (2009)

    Article  ADS  Google Scholar 

  20. C.R. Saha, T. O’Donnell, H. Loder, S. Beeby, J. Tudor, Optimization of an electromagnetic energy harvesting device. IEEE Trans. Magn. 42(10), 3509–3511 (2006)

    Article  ADS  Google Scholar 

  21. A. Crovetto, F. Wang, O. Hansen, Modeling and optimization of an electrostatic energy harvesting device. J. Microelectromech. Syst. 23(5), 1141–1155 (2014)

    Article  Google Scholar 

  22. D. Hoffmann, B. Folkmer, Y. Manoli, Analysis and characterization of triangular electrode structures for electrostatic energy harvesting. J. Micromech. Microeng. 21(10), 104002 (2011)

    Article  ADS  Google Scholar 

  23. H.S. Kim, J.H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  24. Z. Li, L. Zuo, G. Luhrs, L. Lin, Y.X. Qin, Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests. IEEE Trans. Veh. Technol. 62(3), 1065–1074 (2012)

    Article  Google Scholar 

  25. J. Mi, L. Xu, S. Guo, L. Meng, M.A. Abdelkareem, Energy harvesting potential comparison study of a novel railway vehicle bogie system with the hydraulic-electromagnetic energy-regenerative shock absorber. In ASME/IEEE Joint Rail Conference, vol. 50718 (American Society of Mechanical Engineers, 2017), p. V001T07A004

  26. S.F. Ali, S. Adhikari, Energy harvesting dynamic vibration absorbers. J. Appl. Mech. 80(4), 041004 (2013)

    Article  Google Scholar 

  27. Z. Yan, M.R. Hajj, Energy harvesting from an autoparametric vibration absorber. Smart Mater. Struct. 24(11), 115012 (2015)

    Article  ADS  Google Scholar 

  28. S.R. Moheimani, A.J. Fleming, Piezoelectric Transducers for Vibration Control and Damping (Springer, Berlin, 2006)

    MATH  Google Scholar 

  29. H. Abdelmoula, A. Abdelkefi, The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)

    Article  ADS  Google Scholar 

  30. H. Abdelmoula, H.L. Dai, A. Abdelkefi, L. Wang, Control of base-excited dynamical systems through piezoelectric energy harvesting absorber. Smart Mater. Struct. 26(9), 095013 (2017)

    Article  ADS  Google Scholar 

  31. I. McNeil, A. Abdelkefi, Nonlinear modeling and vibration mitigation of combined vortex-induced and base vibrations through energy harvesting absorbers. Commun. Nonlinear Sci. Numer. Simul. 95, 105655 (2021)

    Article  MathSciNet  Google Scholar 

  32. T. Alvis, A. Abdelkefi, Effectiveness and nonlinear characterization of vibro-impact energy harvesting absorbers in controlling base-excited systems. Smart Mater. Struct. 30(9), 095028 (2021)

    Article  ADS  Google Scholar 

  33. A. Abdelkefi, N. Barsallo, Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25(14), 1771–1785 (2014)

    Article  Google Scholar 

  34. M.P. Paidoussis, G.X. Li, R.H. Rand, Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J Appl Mech 58(2), 559–565(1991)

Download references

Acknowledgements

The authors would like to thank Brian Saunders for his assistance and discussions throughout the nonlinear characterizations of the system. The authors would like to thank Sandia National Laboratories for their continued support and funding of this research. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the us Department of Energy or the United States Government SAND2022-2459 J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvis, T., Abdelkefi, A. Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers. Eur. Phys. J. Spec. Top. 231, 1567–1586 (2022). https://doi.org/10.1140/epjs/s11734-022-00495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00495-9

Navigation