Skip to main content

Advertisement

Log in

A review on vibration energy harvesting technologies: analysis and technologies

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

This article has been updated

Abstract

Energy harvesting is the method of extraction of electrical energy from ambient sources. The sources such as heat, light and vibration possess a great amount of energy to extract. The increasing use of wearable devices requires a micro generator which should be able to generate low power usually in the range of micro and milli watts. Vibration energy harvesting is one of the energy harvesting technique that is used in micro generators. The source of vibration can be converted into electrical energy by piezoelectric, electrostatic, and electromagnetic methods. This research work encompasses the recent developments in the field of vibration energy harvesting from modelling, analysis and techniques involved in converting the available vibration energy into electrical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 11 March 2022

    The e-mail ID of the corresponding author with the e-mail symbol next to his name was not shown on SpringerLink.

References

  1. S. Pandya, G. Velarde, L. Zhang et al., New approach to waste-heat energy harvesting: pyroelectric energy conversion. NPG Asia Mater. 11, 26 (2019)

    Article  ADS  Google Scholar 

  2. Y. Zhang, P.T.T. Phuong, E. Roake, H. Khanbareh, Y. Wang, S. Dunn, C. Bowen, Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 4(2), 301–309 (2020)

    Article  Google Scholar 

  3. M.H. Raouadi, O. Touayar, Harvesting wind energy with pyroelectric nanogenerator PNG using the vortex generator mechanism. Sens. Actuators A 273, 42–48 (2018)

    Article  Google Scholar 

  4. S. Cho, Y. Shin, J. Choi, J. Eom, B.S. Oh, J. Lee, G.Y. Jung, Triboelectric nanogenerator based on intercalated Al layer within fluttering dielectric film. Nano Energy 77, 105184 (2020)

    Article  Google Scholar 

  5. R.A. Kishore, S. Priya, A review on low-grade thermal energy harvesting: materials, methods and devices. Materials 11.8, 1433 (2018)

    Article  ADS  Google Scholar 

  6. J. Chun et al., Thermo-magneto-electric generator arrays for active heat recovery system. Sci. Rep. 7(1), 1–8 (2017)

  7. W.S. Wang et al., Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(2), 1–26 (2008)

    Google Scholar 

  8. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)

    Article  Google Scholar 

  9. S. Roundy, On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16(10), 809–823 (2005)

    Article  Google Scholar 

  10. P.V. Malaji, et al., Energy harvesting from dynamic vibration pendulum absorber, in Recent advances in structural engineering, vol. 2. (Springer, Singapore, 2019), pp. 467–478

  11. C. Goel, G. Srinivas, Mechanisms and applications of vibration energy harvesting in solid rocket motors. Microsyst. Technol. 27, 3927–3933 (2021). https://doi.org/10.1007/s00542-020-05200-1

  12. A.C. Waterbury, P.K. Wright, Vibration energy harvesting to power condition monitoring sensors for industrial and manufacturing equipment. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227(6), 1187–1202 (2013)

    Article  Google Scholar 

  13. C. Subramani, A. Jha, S. Mittra, A. Shrivastav, D. Menon, N. Sardul, Energy harvesting using the concept of piezoelectric tile using motors and wooden plank, in Cognitive informatics and soft computing (Springer, Singapore, 2020), pp. 341–347

  14. J. Ahola, T. Ahonen, V. Sarkimaki, A. Kosonen, J. Tamminen, R. Tiainen, T. Lindh, Design considerations for current transformer based energy harvesting for electronics attached to electric motor, in 2008 international symposium on power electronics, electrical drives, automation and motion, pp. 901–905. IEEE (2008)

  15. G. Wang, W. Xu, S. Gao, B. Yang, G. Lu, An energy harvesting type ultrasonic motor. Ultrasonics 75, 22–27 (2017)

    Article  Google Scholar 

  16. E. Massaguer et al., Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect. Energy 129, 59–69 (2017)

    Article  Google Scholar 

  17. N. Tran, M.H. Ghayesh, M. Arjomandi, Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Marghescu, A. Drumea, Modelling and simulation of energy harvesting with solar cell, in Advanced topics in optoelectronics, microelectronics, and nanotechnologies VII, vol. 9258. International Society for Optics and Photonics (2015)

  19. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  20. T. Hehn, Y. Manoli, Piezoelectricity and energy harvester modelling, in Cmos circuits for piezoelectric energy harvesters (Springer, Dordrecht, 2015), pp. 21–40

  21. Q. Zhu, M. Haase, C.H. Wu, Modeling the capacity of a novel flow-energy harvester. Appl. Math. Model. 33(5), 2207–2217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Zhang et al., Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Appl. Energy 164, 152–161 (2016)

    Article  Google Scholar 

  23. H.H. Obeid, A.K. Jaleel, N.A. Hassan, Design and motion modeling of an electromagnetic hydraulic power hump harvester. Adv. Mech. Eng. 6, 150293 (2014)

    Article  Google Scholar 

  24. X. Zhang, Z. Zhang, H. Pan, W. Salman, Y. Yuan, Y. Liu, A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 118, 287–294 (2016)

    Article  Google Scholar 

  25. A. Pirisi, M. Mussetta, F. Grimaccia, R.E. Zich, Novel speed-bump design and optimization for energy harvesting from traffic. IEEE Trans. Intell. Transp. Syst. 14(4), 1983–1991 (2013)

    Article  Google Scholar 

  26. D. Luo, R. Wang, W. Yu, Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system. J. Power Sources 439, 227069 (2019)

    Article  Google Scholar 

  27. A. Hidaka, T. Tsuji, S. Matsumoto, A thermoelectric power generation system with ultra low input voltage boost converter with maximum power point tracking, in 2012 international conference on renewable energy research and applications (ICRERA), pp. 1–5. IEEE (2012)

  28. W.S. Wang, W. Magnin, N. Wang, M. Hayes, B. O’Flynn, C. O’Mathuna, Bulk material based thermoelectric energy harvesting for wireless sensor application. J. Phys. Conf. Ser. 307(1), 012030 (2011)

  29. K. Prajwal, P. Bhat, Thermal analysis of a thermoelectric generator (TEG) using FEM technique, in IOP conference series: materials science and engineering, vol. 1045 (2021)

  30. K., Sun Jin, J. Hyung We, B. Jin Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7(6), 1959–1965 (2014)

  31. H. Wei et al., Recent development and application of thermoelectric generator and cooler. Appl. Energy 143, 1–25 (2015)

    Article  Google Scholar 

  32. R. Riemer, A. Shapiro, Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 8(1), 1–13 (2011)

    Article  Google Scholar 

  33. P.L. Green, E. Papatheou, N.D. Sims, Energy harvesting from human motion: an evaluation of current nonlinear energy harvesting solutions. J. Phys. Conf. Ser. 382(1), 012023 (2012)

  34. J.M. Kluger, T.P. Sapsis, A.H. Slocum, Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams. J. Sound Vib. 341, 174–194 (2015)

    Article  ADS  Google Scholar 

  35. Y. Yang, J. Yeo, S. Priya, Harvesting energy from the counterbalancing (weaving) movement in bicycle riding. Sensors 12(8), 10248–10258 (2012)

    Article  ADS  Google Scholar 

  36. P.L. Green, E. Papatheou, N.D. Sims, Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24(12), 1494–1505 (2013)

    Article  Google Scholar 

  37. W. Wei et al., Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189–197 (2017)

    Article  Google Scholar 

  38. B. Yang et al., Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2(4), e12054 (2020)

    Article  Google Scholar 

  39. Y. Zhang, S.C.S. Cai, L. Deng, Piezoelectric-based energy harvesting in bridge systems. J. Intell. Mater. Syst. Struct. 25(12), 1414–1428 (2014)

    Article  Google Scholar 

  40. D. Vasic, Y.Y. Chen, F. Costa, Self-powered piezoelectric energy harvester for bicycle. J. Mech. Sci. Technol. 28(7), 2501–2510 (2014)

    Article  Google Scholar 

  41. G.K. Ottman et al., Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)

    Article  ADS  Google Scholar 

  42. S.P. Beeby, T. O’Donnell, Electromagnetic energy harvesting, in Priya S., Inman D.J. (eds) Energy Harvesting Technologies, ed. by S. Priya, D.J. Inman (Springer, Boston, 2009). https://doi.org/10.1007/978-0-387-76464-1_5a

  43. W.L. Lu, Y.M. Hwang, Modeling of electromagnetic power output in a vibration-induced micro-generator with a silicon-based helical micro-spring. Microelectron. J. 42(2), 452–461 (2011)

    Article  Google Scholar 

  44. D.-A. Wang, K.-H. Chang, Electromagnetic energy harvesting from flow induced vibration. Microelectron. J. 41(6), 356–364 (2010)

    Article  Google Scholar 

  45. X. Cao et al., Electromagnetic energy harvesting circuit with feedforward and feedback DC–DC PWM boost converter for vibration power generator system. IEEE Trans. Power Electron. 22(2), 679–685 (2007)

    Article  ADS  Google Scholar 

  46. M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, M. Tahir, Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuators A 300, 111634 (2019)

    Article  Google Scholar 

  47. A. Erturk, D.J. Inman, Piezoelectric energy harvesting (Wiley, New York, 2011)

    Book  Google Scholar 

  48. H.S. Kim, J.-H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  49. S. Saadon, O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manag. 52(1), 500–504 (2011)

    Article  Google Scholar 

  50. J.-Q. Liu et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron. J. 39(5), 802–806 (2008)

    Article  Google Scholar 

  51. P. Li et al., Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Adv. 5(4), 047151 (2015)

    Article  ADS  Google Scholar 

  52. R. Takei, et al., Wireless vibration sensing system powered by a piezoelectric MEMS vibration energy harvester, in 2016 IEEE sensors. IEEE (2016)

  53. R. Sriramdas, R. Pratap, An experimentally validated lumped circuit model for piezoelectric and electrodynamic hybrid harvesters. IEEE Sens. J. 18(6), 2377–2384 (2017)

    Article  ADS  Google Scholar 

  54. J.P. Tarelho, M.P.S. dos Santos, J.A. Ferreira, A. Ramos, S. Kopyl, S.O. Kim, S. Hong, A. Kholkin, Graphene-based materials and structures for energy harvesting with fluids—a review. Mater. Today 21(10), 1019–1041 (2018)

    Article  Google Scholar 

  55. C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 52(1–3), 8–11 (1996)

    Article  Google Scholar 

  56. S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. VLSI Syst. 9(1), 64–76 (2001)

    Article  Google Scholar 

  57. Y. Sang et al., A vibration-based hybrid energy harvester for wireless sensor systems. IEEE Trans. Magn. 48(11), 4495–4498 (2012)

    Article  ADS  Google Scholar 

  58. X. Yang et al., A new hybrid piezoelectric-electromagnetic vibration-powered generator and its model and experiment research. IEEE Trans. Appl. Supercond. 24(3), 1–14 (2013)

    Google Scholar 

  59. J. Yeo et al., Multi-dimensional vibration energy harvester for efficient use in common environment, in 2015 IEEE sensors. IEEE (2015)

  60. H. Liu et al., Study of a hybrid generator based on triboelectric and electromagnetic mechanisms. IEEE Sens. J. 17(12), 3853–3860 (2017)

    Article  ADS  Google Scholar 

  61. K. Nedelchev, I. Kralov, Efficiency improvement of a vibration energy harvesting generator by using additional vibrating system, in AIP Conference Proceedings, vol 1910 (2017), p. 020015 (2017). https://doi.org/10.1063/1.5013952

  62. C.T. Pan, Y.J. Chen, Z.H. Liu, C.H. Huang, Design and fabrication of LTCC electro-magnetic energy harvester for low rotary speed. Sens. Actuators A 191, 51–60 (2013)

    Article  Google Scholar 

  63. K.I. Lee, B.J. Lim, S.H. Kim, Y. Hong, Energy harvesting by rotation of wheel for tire monitoring system, in 2012 IEEE sensors, pp. 1–4. IEEE (2012)

  64. S. Boisseau, G. Despesse, Seddik, Electrostatic conversion for vibration energy harvesting, in Small-scale energy harvesting (2012)

  65. S. Meninger, J.M. Miranda, J.L.A. Chandrakasan, A. Slocum, M. Schmidt, R. Amirtharajah, Vibration to electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9, 64–76 (2001)

    Article  Google Scholar 

  66. T. Tsutsumino, Y. Suzuki, N. Kasagi, Electromechanical modeling of micro electret generator for energy harvesting, in Proc. The 14th international conference on solid state sensors, actuator and micro systems, Lyon, France, pp. 863–866 (2007)

  67. L.G.W. Tvedt, L.C.J. Blystad, E. Halvorsen, Simulation of an electrostatic energy harvester at large amplitude narrow and wide band vibrations, in Proc. the DTIP MEMS and MOEMS, pp. 296–301 (2008)

  68. S. Mizuno, M. Ishihara, S. Wickramanayaka, N. Miyazaki, Electrostatic Chuck Device. JUSTIA Patent (2003)

  69. P. Miao, A.S. Holmes, E.M. Yeatman, T.C. Green, P.D. Mitcheson, Micro-machined variable capacitors for power generation. Electrostatics 178, 53–58 (2003)

    Google Scholar 

  70. A. Kempitiya, D.A. Borca-Tasciuc, M.M. Hella, Analysis and optimization of asynchronously controlled electrostatic energy harvesters. IEEE Trans. Ind. Electron. 59(1), 456–463 (2011)

    Article  Google Scholar 

  71. M. Bedier, D. Galayko, A smart energy extraction interface for electrostatic vibrational energy harvester, in 2016 IEEE international conference on electronics, circuits and systems (ICECS), pp. 425–426). IEEE (2016)

  72. A. Karami, P. Basset, D. Galayko, Electrostatic vibration energy harvester using an electret-charged mems transducer with an unstable auto-synchronous conditioning circuit. J. Phys. Conf. Ser. 660(1), 012025) (2015)

  73. E.O. Torres, A. Gabriel, R. Mora, Energy budget and high gain strategies for voltage constrained electrostatic harvesters. IEEE Trans. Power Energy (2009)

  74. E.O. Torres, G.A. Rincón-Mora, Self-tuning electrostatic energy-harvester IC. IEEE Trans. Circuits Syst. II Express Briefs 57(10), 808–812 (2010)

    Google Scholar 

  75. G. Altena, M. Renaud, R. Elfrink, M.H. Goedbloed, C. De Nooijer, R. Van Schaijk, Design improvements for an electret-based MEMS vibrational electrostatic energy harvester. J. Phys. Conf. Ser. 476(1), 012078 (2013)

  76. M. Evans, L. Tang, K. Tao, K. Aw, Design and optimisation of an underfloor energy harvesting system. Sens. Actuators A 285, 613–622 (2019)

    Article  Google Scholar 

  77. P.D. Mitcheson, Analysis and optimisation of energy-harvesting micro-generator systems. Doctoral dissertation, Imperial College London (University of London) (2005)

  78. H. Sharma, A. Haque, Z.A. Jaffery, Modeling and optimisation of a solar energy harvesting system for wireless sensor network nodes. J. Sens. Actuator Netw. 7(3), 40 (2018)

    Article  Google Scholar 

  79. G. Ye, J. Yan, Z.J. Wong, K. Soga, A. Seshia, Optimisation of a piezoelectric system for energy harvesting from traffic vibrations, in 2009 IEEE international ultrasonics symposium, pp. 759–762). IEEE (2009)

  80. C.K. Thein, J.S. Liu, Numerical modeling of shape and topology optimisation of a piezoelectric cantilever beam in an energy-harvesting sensor. Eng. Comput. 33(1), 137–148 (2017)

    Article  Google Scholar 

  81. E.L. Worthington, M. Zhu, P. Kirby, Piezoelectric energy harvesting: enhancing power output by device optimisation and circuit techniques. Doctoral dissertation, Cranfield University, School of Applied Sciences (2010)

  82. P.V. Malaji, M.I. Friswell, S. Adhikari, G. Litak, Enhancement of harvesting capability of coupled nonlinear energy harvesters through high energy orbits. AIP Adv. 10(8), 085315 (2020)

    Article  ADS  Google Scholar 

  83. R. Dauksevicius et al., Frequency up-converting vibration energy harvester with multiple impacting beams for enhanced wideband operation at low frequencies. Proc. Eng. 87, 1517–1520 (2014)

    Article  Google Scholar 

  84. D. Santos, M.P. Soares et al., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep. 6(1), 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  85. C.R. Saha et al., Optimization of an electromagnetic energy harvesting device. IEEE Trans. Magn. 42(10), 3509–3511 (2006)

    Article  ADS  Google Scholar 

  86. C.R. Saha, T. O’Donnell, H. Loder, Optimisation of electromagnetic vibrational energy harvesting device, in 2006 IEEE international magnetics conference (INTERMAG), pp. 599–599). IEEE (2006)

  87. Ö. Zorlu, E.T. Topal, H. Külah, A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens. J. 11(2), 481–488 (2010)

    Article  ADS  Google Scholar 

  88. Ö. Zorlu, E.T. Topal, H. Külah, A mechanical frequency up-conversion mechanism for vibration based energy harvesters, in 2009 IEEE sensors, pp. 1366–1369. IEEE (2009)

  89. Z. Li et al., Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests. IEEE Trans. Veh. Technol. 62(3), 1065–1074 (2012)

    Article  Google Scholar 

  90. Z. Li, L. Zuo, J. Kuang, G. Luhrs, Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct. 22(2), 025008 (2012)

    Article  ADS  Google Scholar 

  91. G. Litak, J. Margielewicz, D. Ga̧ska, P. Wolszczak, S. Zhou, multiple solutions of the tristable energy harvester. Energies 14(5), 1284 (2021)

  92. S. Dwari, L. Parsa, Efficient low voltage direct AC/DC converters for self-powered wireless sensor nodes and mobile electronics, in INTELEC 2008-2008 IEEE 30th international telecommunications energy conference, pp. 1–7. IEEE (2008)

  93. S. Dwari, L. Parsa, Low voltage energy harvesting systems using coil inductance of electromagnetic microgenerators, in 2009 twenty-fourth annual IEEE applied power electronics conference and exposition, pp. 1145–1150). IEEE (2009)

  94. S. Dwari, R. Dayal, L. Parsa, A novel direct AC/DC converter for efficient low voltage energy harvesting, in 2008 34th annual conference of IEEE industrial electronics, pp. 484–488. IEEE (2008)

  95. S.M.M. Mudassir, S.M. Mukassir, A. Farooqi, An independent AC-DC converter operating on buck and buck-boost topology for low power harvesting, in 2017 IEEE international conference on power, control, signals and instrumentation engineering (ICPCSI), pp. 777–782. IEEE (2017)

  96. P.D. Mitcheson, T.C. Green, E.M. Yeatman, Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst. Technol. 13(11–12), 1629–1635 (2007)

    Article  Google Scholar 

  97. G. Wang, C. Luo, H. Hofmann, L. Rome, Power electronic circuitry for energy harvesting backpack, in 2009 IEEE energy conversion congress and exposition, pp. 3544–3549. IEEE (2009)

  98. R. Dayal, L. Parsa, A new single stage AC-DC converter for low voltage electromagnetic energy harvesting, in 2010 IEEE energy conversion congress and exposition, pp. 4447–4452). IEEE (2010)

  99. R. Dayal, S. Dwari, L. Parsa, Maximum energy harvesting from vibration-based electromagnetic microgenerator using active damping. Electron. Lett. 46(5), 371–373 (2010)

    Article  ADS  Google Scholar 

  100. R. Dayal, S. Dwari, L. Parsa, Design and implementation of a direct AC-DC boost converter for low-voltage energy harvesting. IEEE Trans. Ind. Electron. 58(6), 2387–2396 (2010)

    Article  Google Scholar 

  101. S. Dwari, et al., Efficient direct ac-to-dc converters for vibration-based low voltage energy harvesting, in 2008 34th Annual Conference of IEEE Industrial Electronics. IEEE (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Prajwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajwal, K.T., Manickavasagam, K. & Suresh, R. A review on vibration energy harvesting technologies: analysis and technologies. Eur. Phys. J. Spec. Top. 231, 1359–1371 (2022). https://doi.org/10.1140/epjs/s11734-022-00490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00490-0

Navigation