Skip to main content
Log in

Chaos synchronization with coexisting global fields

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate the phenomenon of chaos synchronization in systems subject to coexisting autonomous and external global fields by employing a simple model of coupled maps. Two states of chaos synchronization are found: (i) complete synchronization, where the maps synchronize among themselves and to the external field, and (ii) generalized or internal synchronization, where the maps synchronize among themselves but not to the external global field. We show that the stability conditions for both states can be achieved for a system of minimum size of two maps. We consider local maps possessing robust chaos and characterize the synchronization states on the space of parameters of the system. The state of generalized synchronization of chaos arises even when the drive and the local maps have the same functional form. This behavior is similar to the process of spontaneous ordering against an external field found in nonequilibrium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Please note that this is a theoretical and computational work; there is no experimental or statistical data repository associated with this manuscript. The authors have elaborated the computer programs employed in the numerical calculations, and they can be shared with interested researchers upon request.]

References

  1. Y. Kuramoto, Chemical oscillations, waves and turbulence (Springer, Berlin, 1984)

    Book  Google Scholar 

  2. N. Nakagawa, Y. Kuramoto, Phys. D 75, 74 (1994)

    Article  Google Scholar 

  3. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  4. K. Wiesenfeld, P. Hadley, Phys. Rev. Lett. 62, 1335 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Wiesenfeld, C. Bracikowski, G. James, R. Roy, Phys. Rev. Lett. 65, 1749 (1990)

    Article  ADS  Google Scholar 

  6. K. Kaneko, I. Tsuda, Complex systems: chaos and beyond (Springer, Berlin, 2001)

    Book  Google Scholar 

  7. M. Newman, A. Barabási, D.J. Watts, The structure and dynamics of networks (Princeton University Press, Princeton, 2006)

    MATH  Google Scholar 

  8. V.M. Yakovenko, in Encyclopedia of complexity and system science, ed. by R.A. Meyers (Springer, New York, 2009)

  9. J.C. González-Avella, M.G. Cosenza, V.M. Eguiluz, M. San Miguel, New J. Phys. 12, 013010 (2010)

    Article  ADS  Google Scholar 

  10. M.G. Cosenza, M.E. Gavidia, J.C. González-Avella, PLoS One 15(4), e0230923 (2020)

    Article  Google Scholar 

  11. J.C. González-Avella, M.G. Cosenza, M. San Miguel, PLoS One 7, e51035 (2012)

    Article  ADS  Google Scholar 

  12. K. Kaneko, Phys. D 41, 137 (1990)

    Article  MathSciNet  Google Scholar 

  13. S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of dynamical order: synchronization phenomena in complex systems (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  14. G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)

    Article  ADS  Google Scholar 

  15. A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 114, 144103 (2014)

    Article  ADS  Google Scholar 

  16. J. Garcia-Ojalvo, M.B. Elowitz, S.H. Strogatz, Proc. Natl. Acad. Sci. USA 101, 10955 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Wang, I.Z. Kiss, J.L. Hudson, Chaos 10, 248 (2000)

    Article  ADS  Google Scholar 

  18. S. De Monte, F. d’Ovidio, S. Dano, P.G. Sorensen, Proc. Natl. Acad. Sci. USA 104, 18377 (2007)

    Article  ADS  Google Scholar 

  19. A.F. Taylor, M.R. Tinsley, F. Wang, Z. Huang, K. Showalter, Science 323, 614 (2009)

    Article  ADS  Google Scholar 

  20. M.R. Tinsley, S. Nkomo, S. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  21. I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  22. N.B. Ouchi, K. Kaneko, Chaos 10, 359 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.G. Cosenza, A. Parravano, Phys. Rev. E 64, 036224 (2001)

    Article  ADS  Google Scholar 

  24. A. Pikovsky, M. Rosenblum, Chaos 25, 097616 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Banerjee, J.A. Yorke, C. Grebogi, Phys. Rev. Lett. 80, 3049 (1998)

    Article  ADS  Google Scholar 

  26. T. Kawabe, Y. Kondo, Prog. Theor. Phys. 85, 759 (1991)

    Article  ADS  Google Scholar 

  27. A. Parravano, M.G. Cosenza, Phys. Rev. E 58, 1665 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by ViceCancillería de Investigación e Innovación, Universidad Yachay Tech, Ecuador, through Proyectos de Fondos Internos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Cosenza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Llamoza, O., Cosenza, M.G. Chaos synchronization with coexisting global fields. Eur. Phys. J. Spec. Top. 231, 267–272 (2022). https://doi.org/10.1140/epjs/s11734-021-00417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00417-1

Navigation