Skip to main content
Log in

Molecular response for nematic superconducting media in a hollow cylinder: a numerical approach

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the context of the Ginzburg–Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non-trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Neumann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instance that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.A. Abrikosov, Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  2. A. Aftalion, H. Brezis (ed), and L. Tatsien (ed). Ginzburg-Landau Vortices, chapter I: Bifurcation Problems for Ginzburg-Landau Equations and Applications to Bose-Einstein Condensates. Series in Contemporary Applied Mathematics CAM 5. Higher Education Press - Word Scientific (2004)

  3. D.G. Barci, R.V. Clarim, N.L. Silva Júnior, Phys. Rev. B 94, 184507 (2016)

    Article  ADS  Google Scholar 

  4. J.P. Borgna, P. Panayotaros, D. Rial, C. Sánchez de la Vega, Nonlinearity 31(4), 1535 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. P. Borgna, P. Panayotaros, D. Rial, and C. Sánchez de la Vega. Physica D: Nonlinear Phenomena, 408(132448), (2020)

  6. F. Bowman, Introduction to Bessel Functions. Dover Books on Mathematics (Dover Publications, New York, 1958)

    Google Scholar 

  7. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics. Liquid Crystals Book Series (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  8. M. Cyrot, Rep. Progress Phys. 36(2), 103–158 (1973)

    Article  ADS  Google Scholar 

  9. V. Fréedericksz, V. Zolina, Trans. Faraday Soc. 29, 919930 (1933)

    Article  Google Scholar 

  10. D. García Ovalle, J.P. Borgna, M. De Leo, Physica D 414, 132705 (2020)

    Article  MathSciNet  Google Scholar 

  11. V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  12. L. Jacobs, C. Rebbi, Phys. Rev. B 19, 4486–4494 (1979)

    Article  ADS  Google Scholar 

  13. M. Y. Kagan. Modern trends in Superconductivity and Superfluidity. Lecture Notes in Physics. Springer Netherlands, (2013)

  14. M.-C. Lai, Y.-H. Tseng, J. Comput. Phys. 208(1), 196–205 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. García Ovalle, E. Muñoz, R.D. Benguria, Physica Scripta 95(5), 055809 (2020)

    Article  ADS  Google Scholar 

  16. E.B. Priestley, P.J. Wojtowicz, P. Sheng, Introduction to Liquid Crystals (Plenum Press, New York And London, 1975)

    Google Scholar 

  17. E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser, Boston, 2008)

    MATH  Google Scholar 

  18. V.V. Schmidt, P. Müller, I.V. Grigorieva, A.V. Ustinov, The Physics of Superconductors: Introduction to Fundamentals and Applications (Springer, Berlin, 1997)

    Book  Google Scholar 

  19. C. Sow, K. Harada, A. Tonomura, G. Crabtree, D. Grier, Phys. Rev. Lett. 80, 2693–2696 (1998)

    Article  ADS  Google Scholar 

  20. R. Tao, Y.-J. Yan, X. Liu, Z.-W. Wang, Y. Ando, Q.-H. Wang, T. Zhang, D.-L. Feng, Phys. Rev. X 8, 041024 (2018)

    Google Scholar 

  21. M. Tinkham, Introduction to Superconductivity. International series in pure and applied physics (McGraw Hill, New York, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano De Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leo, M., Ovalle, D.G. & Borgna, J.P. Molecular response for nematic superconducting media in a hollow cylinder: a numerical approach. Eur. Phys. J. Spec. Top. 231, 423–434 (2022). https://doi.org/10.1140/epjs/s11734-021-00408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00408-2

Navigation