Skip to main content
Log in

Boundary crises and supertrack orbits in the Gauss map

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Supertrack orbits are used to investigate boundary crises in an one-dimensional, two-parameter (\(\nu ,\beta \)), nonlinear Gauss map. After the crises, the time evolution of the orbit is shown to be pseudo-chaotic. We investigate the chaotic transient, that is, the time an orbit spends in a region where the chaotic attractor existed prior to the crisis, and confirm it decays exponentially with time. The relaxation time is given by a power-law \(\tau \propto \mu ^{\gamma }\) with \(\mu =|\beta -\beta _c|\) corresponding to the distance measured in the parameter where the crises are observed. \(\beta _c\) is the parameter that characterizes the occurrence of a boundary crisis and the numerical value of the power measured was \(\gamma =1/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, New York, 1994)

    MATH  Google Scholar 

  2. W.B. Zang, Discrete Dynamical Systems, Bifurcations and Chaos in Economics. Amsterdam, Elsevier Science (2006)

  3. M. Martelli, Introduction to discrete dynamical systems and chaos (Wiley, New York, 1999)

    Book  Google Scholar 

  4. R.L. Devaney, A first course in chaotic dynamical systems: theory and experiment (Studies in nonlinearity) Cambridge, Westview Press (1992)

  5. O. Galor, Discrete dynamical systems (Springer, Heildelberg, 2007)

    Book  Google Scholar 

  6. R.L. Devaney, An introduction to chaotic dynamical systems (Westview Press, Cambridge, 2003)

    MATH  Google Scholar 

  7. R.M. May, Biological Populations with Nonoverlapping Generations: Stable Points. Stable Cycles Chaos Sci. 86, 645 (1974)

    Google Scholar 

  8. R.M. May, G.A. Oster, Bifurcations and Dynamic Complexity in Simple Ecological Models. Am. Nat. 110, 573 (1976)

    Article  Google Scholar 

  9. A.C.J. Luo, O\(^{\prime }\)Connor D M, System Dynamics with Interaction Discontinuity (Nonlinear Systems and Complexity). Springer (2015)

  10. E. Ott, Chaos in dynamical systems (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  11. E. Marsden, M. McCracken, The Hopf bifurcation and its applications (Springer, Berlin, 1976)

    Book  Google Scholar 

  12. D. Ruelle, D. Takens, On the Nature of Turbulence. Commun. Math. Phys. 20, 167 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Collet, Eckmann J -P (Iterated Maps on the Interval as Dynamical Systems. Birkhäuser Basel, Modern Birkhäuser Classics, 2009)

    Google Scholar 

  15. C. Grebogi, E. Ott, J.A. Yorke, Chaotic Attractors in Crisis. Phys. Rev. Lett. 48, 1507 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Grebogi, E. Ott, J.A. Yorke, C. Grebogi, E. Ott, Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Grebogi, E. Ott, F. Romeiras, J.A. Yorke, Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.R. da Costa, R.O. Medrano-T, E.D. Leonel, Route to chaos and some properties in the boundary crisis of a generalized logistic mapping. Physica A 486, 674 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Jeffries, J. Perez, Direct observation of crises of the chaotic attractor in a nonlinear oscillator. Phys. Rev. A 27, 601 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.D. Brorson, D. Dewey, P.S. Linsay, Self-replicating attractor of a driven semiconductor oscillator. Phys. Rev. A 28, 1201 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Ikezi, J.S. deGrassie, T.H. Jensen, Observation of multiple-valued attractors and crises in a driven nonlinear circuit. Phys. Rev. A 28, 1207 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Iansiti, Hu Qing, Westervelt R M, Tinkham M, Noise and Chaos in a Fractal Basin Boundary Regime of a Josephson Junction. Phys. Rev. Lett. 55, 746 (1985)

    Article  ADS  Google Scholar 

  23. D. Dangoisse, P. Glorieux, D. Hennequin, Laser Chaotic Attractors in Crisis. Phys. Rev. Lett. 57, 2657 (1986)

    Article  ADS  Google Scholar 

  24. E. Ott, Strange attractors and chaotic motions of dynamical systems (Spring New York, New York, 2004)

    MATH  Google Scholar 

  25. R.K. Pathria, Beale P D, Statistical mechanics. Elsevier (2011)

  26. Z. Zhou, W. Shi, Y. Bao, M. Yang, A Gaussian function based chaotic neural network, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 4, 203 (2010)

  27. E.M. Oblow, Supertracks, supertrack functions and chaos in the quadratic map. Phys. Lett. A 128, 406 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer-Veriag, New York, 1997)

    Book  Google Scholar 

Download references

Acknowledgements

HMJM acknowledges FAPESP (2015/22062-3) (Brazilian agency). JAO thanks to CNPq (309649/2021-8, 303242/2018-3, 421254/2016-5, 311105/ 2015-7) and FAPESP(2018/14685-9) (Brazilian agencies). VAF Thanks CAPES (Brazilian agency). REC thanks CNPq (306034/2015-8) and FAPESP (2019/07329-4). EDL thanks to CNPq (301318/2019-0, 303707/2015-1), FUNDUNESP and FAPESP (2021/09519-5, 2019/14038-6, 2017/ 14414-2, 2012/23688-5, 2008/57528-9, 2005/56253-8) (Brazilian agencies). This research was supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano A. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.A.d., Mendonça, H.M.J.d., Favarim, V.A. et al. Boundary crises and supertrack orbits in the Gauss map. Eur. Phys. J. Spec. Top. 231, 381–384 (2022). https://doi.org/10.1140/epjs/s11734-021-00402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00402-8

Navigation