Abstract
Raman spectroscopy has been widely used as an effective tool to characterize two-dimensional transition metal-dichalcogenides. Here we report a comparative study of the Fröhlich exciton–phonon interaction in monolayer (ML), bilayer (BL) and spiral (SPI) \(\hbox {WS}_{2}\) nanostructures using angle-dependent polarized Raman (ADPR) and helicity-resolved Raman (HRR) measurements. HRR measurements show that the Raman modes maintain the helicity of the incident photons in all the three structures studied, which suggests that with resonance excitation, the Raman selection rules are seemingly violated due to the strong Fröhlich exciton–phonon interaction. Using ADPR measurements, we deduce the ratio of Raman tensor elements for the \(E_{2g}^{1}\) mode for the different nanostructures.
This is a preview of subscription content, access via your institution.




References
M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Nanophotonics 5, 111 (2016)
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)
F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photonics 8, 899 (2014)
K. Behnia, Nat. Nanotechnol. 7, 488 (2012)
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Nat. Nanotechnol. 7, 490 (2012)
E. Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M.A. Nguyen, T.E. Mallouk, M. Terrones, M.A. Pimenta, D. De Fisica, U. Federal, D.M. Gerais, A.A. Carlos, C. Postal, B. Horizonte, D.E.L. Corro, E.T. Al, ACS Nano 8, 9629 (2014)
C. Lee, H. Yan, L. Brus, T. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)
X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Chem. Soc. Rev. 44, 2757 (2015)
X. Lu, X. Luo, J. Zhang, S.Y. Quek, Q. Xiong, Nano Res. 9, 3559 (2016)
A.A. Puretzky, L. Liang, X. Li, K. Xiao, B.G. Sumpter, V. Meunier, D.B. Geohegan, ACS Nano 10, 2736 (2016)
J. Yan, J. Xia, X. Wang, L. Liu, J.L. Kuo, B.K. Tay, S. Chen, W. Zhou, Z. Liu, Z.X. Shen, Nano Lett. 15, 8155 (2015)
X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong, S. Ying Quek, Sci. Rep. 5, 14565 (2015)
B. Xu, N. Mao, Y. Zhao, L. Tong, J. Zhang, J. Phys. Chem. Lett. 12, 7442 (2021)
A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, M. Terrones, Sci. Rep. 3, 1755 (2013)
S.G. Drapcho, J. Kim, X. Hong, C. Jin, S. Shi, S. Tongay, J. Wu, F. Wang, Phys. Rev. B 95, 165417 (2017)
B. Miller, J. Lindlau, M. Bommert, A. Neumann, H. Yamaguchi, A. Holleitner, A. Högele, U. Wurstbauer, Nat. Commun. 10, 807 (2019)
R.M. Martin, Phys. Rev. B 4, 3676 (1971)
P.V. Sarma, P.D. Patil, P.K. Barman, R.N. Kini, M.M. Shaijumon, RSC Adv. 6, 376 (2016)
P.K. Barman, P.V. Sarma, M.M. Shaijumon, R.N. Kini, Sci. Rep. 9, 2784 (2019)
X. Fan, Y. Zhao, W. Zheng, H. Li, X. Wu, X. Hu, X. Zhang, X. Zhu, Q. Zhang, X. Wang, B. Yang, J. Chen, S. Jin, A. Pan, Nano Lett. 18, 3885 (2018)
S. Sahoo, A.P.S. Gaur, M. Ahmadi, R.S. Katiyar, J. Phys. Chem. C 117, 9042–9047 (2013)
N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, T. Yu, Nano Res. 8, 1210 (2015)
D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 0377 (1981)
M. Staiger, R. Gillen, N. Scheuschner, O. Ochedowski, F. Kampmann, M. Schleberger, C. Thomsen, J. Maultzsch, Phys. Rev. B 91, 195419 (2015)
C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Adv. Opt. Mater. 2, 131 (2014)
R. Loudon, Adv. Phys. 13, 423 (1964)
J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)
R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, J. Phys. Condens. Matter 28, 353002 (2016)
D. Doratotaj, J.R. Simpson, J.-A. Yan, Phys. Rev. B 93, 075401 (2016)
Y. Zhao, S. Han, J. Zhang, L. Tong, J. Raman Spectrosc. 52, 525 (2021)
S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett. 15, 2526 (2015)
V. Vandalon, A. Sharma, A. Perrotta, B. Schrode, M.A. Verheijen, A.A. Bol, Nanoscale 11, 22860 (2019)
N. Yoshikawa, S. Tani, K. Tanaka, Phys. Rev. B 95, 115419 (2017)
B.M.T. Suboi, J.M.B.E. Ã, G.J.T. Homas, Ã. Jr, M. Tsuboi, J.M. Benevides, G.J. Thomas, Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 85, 83 (2009)
E.J.G. Santos, E. Kaxiras, ACS Nano 7, 10741 (2013)
H.P. Komsa, A.V. Krasheninnikov, Phys. Rev. B 86, 1 (2012)
H. Fröhlich, Adv. Phys. 3, 325 (1954)
C. Trallero-Giner, A. Cantarero, M. Cardona, Phys. Rev. B 40, 4030 (1989)
A. Cantarero, C. Trallero-Giner, M. Cardona, Phys. Rev. B 40, 12290 (1989)
Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Y. Wan, Y. Wang, X. Xu, M. Lin, X. Wan, F. Song, L. Dai, Sci. Rep. 6, 29254 (2016)
H.Y. Jeong, Y. Jin, S.J. Yun, J. Zhao, J. Baik, D.H. Keum, H.S. Lee, Y.H. Lee, Adv. Mater. 29, 1 (2017)
W.H. Lin, W.S. Tseng, C.M. Went, M.L. Teague, G.R. Rossman, H.A. Atwater, N.C. Yeh, ACS Nano 14, 1350 (2020)
Acknowledgements
RNK acknowledges the funding support by the Science and Engineering Research Board, Department of Science and Technology, India, through the Research Grant No.s CRG/2019/004865 and IPA/2020/000021.
Author information
Authors and Affiliations
Contributions
PKB performed the Raman, characterization measurements and data analysis. PVS prepared the samples using the CVD method. MMS supervised the material growth and nanostructure design. RNK supervised the measurements and analysis. PKB wrote the manuscript with inputs from all authors.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no competing financial interests.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Barman, P.K., Sarma, P.V., Shaijumon, M.M. et al. Resonant-Raman study of Fröhlich exciton–phonon interaction in WS2 nanostructures. Eur. Phys. J. Spec. Top. 231, 743–748 (2022). https://doi.org/10.1140/epjs/s11734-021-00389-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjs/s11734-021-00389-2