Skip to main content
Log in

Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article, a new model of Hopfield Neural Network (HNN) with two neurons considering a synaptic weight with a hyperbolic-type memristor is studied. Equilibrium points analysis shows that the system has an unstable line of equilibrium in the absence of the external stimuli (i.e. \(I_{1} =0)\) and presents no equilibrium point in the presence of the external stimuli (i.e. \(I_{1} \ne 0)\); hence the model admits hidden attractors. Analyses are carried out for both cases \(I_{1} =0\) and \(I_{1} \ne 0\) using appropriate tools (bifurcation diagrams and the Lyapunov exponents, phase portraits, etc.). For both modes of operations, the system exhibits complex homogeneous and heterogeneous bifurcations, respectively marked by a large number of coexisting attractors. The roads to chaos unfold in the same scenario of period doubling. The Hamiltonian plot for the case \(I_{1} =0\) allows us to observe an increase in the energy of the neuronal structure when it migrates from regular oscillations to irregular ones. Moreover, the existence of infinitely many coexisting homogeneous solutions (chaotic or periodic) is revealed for case \(I_{1} =0\). In contrast, for \(I_{1} \ne 0\) (i.e \(I_{1} =0.1)\) the new model presents infinitely many coexisting hidden heterogeneous attractors (periodic and chaotic). An electronic circuit design of the new hyperbolic memristor enables the analog computer of the whole system to be designed for future engineering applications. Simulation results based on this analog computer in PSpice confirm those of the numerical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Z.-H. Guan, F. Huang, W. Guan, Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)

    Article  ADS  MATH  Google Scholar 

  2. L. Kamdjeu Kengne, Y.P. Kamdeu Nkandeu, J.R. Mboupda Pone, A. Tiedeu, H.B. Fotsin, Image encryption using a novel quintic jerk circuit with adjustable symmetry. Int. J. Circ. Theory Appl. 49(4), 1470–1501 (2021)

    Article  Google Scholar 

  3. C. Lakshmi, K. Thenmozhi, J.B.B. Rayappan, R. Amirtharajan, Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput. Appl. 32(15), 11477–11489 (2020)

    Article  Google Scholar 

  4. ZT. Njitacke, SD. Isaac, T. Nestor, J. Kengne, Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption. Neural Computing and Applications:1-20 (2020)

  5. S. Shaukat, A. Arshid, A. Eleyan, SHAH SA, AHMAD J, Chaos theory and its application: an essential framework for image encryption. Chaos Theory and Applications 2(1), 17–22 (2020)

  6. E. Tlelo-Cuautle, V. Carbajal-Gomez, P. Obeso-Rodelo, J. Rangel-Magdaleno, J.C. Nuñez-Perez, FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn 82(4), 1879–1892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Tsafack, J. Kengne, B. Abd-El-Atty, A.M. Iliyasu, K. Hirota, Abd EL-Latif AA, Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Information Sciences 515, 191–217 (2020)

  8. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Image encryption process based on chaotic synchronization phenomena. Signal Process 93(4), 1328–1340 (2013)

    Article  Google Scholar 

  9. R.L. Filali, M. Benrejeb, P. Borne, On observer-based secure communication design using discrete-time hyperchaotic systems. Commun. Nonlinear Sci. Nume. Simul. 19(4), 1424–1432 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. Grzybowski, M. Rafikov, J.M. Balthazar, Synchronization of the unified chaotic system and application in secure communication. Commun. Nonlinear Sci. Num. Simul. 14(5), 2793–2806 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.L. Mata-Machuca, R. Martínez-Guerra, R. Aguilar-López, C. Aguilar-Ibañez, A chaotic system in synchronization and secure communications. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1706–1713 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Nana, P. Woafo, Synchronized states in a ring of four mutually coupled oscillators and experimental application to secure communications. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1725–1733 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B. Nana, P. Woafo, S. Domngang, Chaotic synchronization with experimental application to secure communications. Commun. Nonlinear Sci. Numer. Simul. 14(4), 2266–2276 (2009)

    Article  ADS  Google Scholar 

  14. A. Akgul, C. Li, I. Pehlivan, Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J. Circuits Syst. Comput. 26(9), 1750190 (2017)

    Article  Google Scholar 

  15. Nguimdo R. Modeste, R. Tchitnga, P. Woafo, Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation. Chaos: An Interdisciplinary Journal of Nonlinear Science 23 (4):043122 (2013)

  16. R.M. Nguimdo, G. Verschaffelt, J. Danckaert, X. Leijtens, J. Bolk, G. Van der Sande, Fast random bits generation based on a single chaotic semiconductor ring laser. Opt. Express 20(27), 28603–28613 (2012)

    Article  ADS  Google Scholar 

  17. G. Alvarez, S. Li, Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcation Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. Lai, Z. Wan, A. Akgul, O.F. Boyraz, M.Z. Yildiz, Design and implementation of a new memristive chaotic system with application in touchless fingerprint encryption. Chin. J. Phys. 67, 615–630 (2020)

    Article  MathSciNet  Google Scholar 

  19. T. Nestor, N.J. De Dieu, K. Jacques, E.J. Yves, A.M. Iliyasu, A. El-Latif, A. Ahmed, A multidimensional hyperjerk oscillator: dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem. Sensors 20(1), 83 (2020)

    Article  ADS  Google Scholar 

  20. C. Volos, A. Akgul, V.-T. Pham, I. Stouboulos, I. Kyprianidis, A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 89(2), 1047–1061 (2017)

    Article  Google Scholar 

  21. Y. ADIYAMAN, S. EMİROGLU, MK. UÇAR, M. YILDIZ, Dynamical analysis, electronic circuit design and control application of a different chaotic system. Chaos Theory and Applications 2 (1):10-16 (2020)

  22. J. Kengne, R.L.T. Mogue, Dynamic analysis of a novel jerk system with composite tanh-cubic nonlinearity: chaos, multi-scroll, and multiple coexisting attractors. Int. J. Dyn. Control 7(1), 112–133 (2019)

    Article  Google Scholar 

  23. J. Kengne, R.L.T. Mogue, T.F. Fozin, A.N.K. Telem, Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: coexisting multiple attractors, period doubling reversals, crisis, and offset boosting. Chaos Solitons Fractals 121, 63–84 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J. Kengne, S. Njikam, V.F. Signing, A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity. Chaos Solitons Fractals 106, 201–213 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L.K. Kengne, J.R.M. Pone, H.B. Fotsin, On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study. Chaos, Solitons & Fractals 145, 110795 (2021)

  26. G. Leutcho, J. Kengne, L.K. Kengne, Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors. Chaos Solitons Fractals 107, 67–87 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. G.D. Leutcho, J. Kengne, A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos Solitons Fractals 113, 275–293 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Z. Njitacke, T. FOZİN, L.K. KENGNE, G. LEUTCHO, EM. Kengne, J. Kengne, Multistability and its Annihilation in the Chua’s Oscillator with Piecewise-Linear Nonlinearity. Chaos Theory and Applications 2(2), 77–89 (2020)

  29. IS. Doubla, J. Kengne, Tekam RB. Wafo, Njitacke Z. Tabekoueng, Dagang CT. Sanjong, Effects of Symmetric and Asymmetric Nonlinearity on the Dynamics of a Third-Order Autonomous Duffing–Holmes Oscillator. Complexity 2020 (2020)

  30. L. Kamdjeu Kengne, H.T. Kamdem Tagne, A.N. Kengnou Telem, J.R. Mboupda Pone, J. Kengne, A broken symmetry approach for the modeling and analysis of antiparallel diodes-based chaotic circuits: a case study. Analog Integrated Circ. Signal Process. 104, 205–227 (2020)

    Article  Google Scholar 

  31. Kengne L. Kamdjeu, Pone JR. Mboupda, HB. Fotsin, Symmetry and asymmetry induced dynamics in a memristive twin-T circuit. Int. J. Electron.:1-30 (2021)

  32. L.K. Kengne, J. Kengne, H.B. Fotsin, The effects of symmetry breaking on the dynamics of a simple autonomous jerk circuit. Analog Integrated Circ. Signal Process. 101(3), 489–512 (2019)

    Article  Google Scholar 

  33. LK. Kengne, J. Kengne, Pone JR. Mboupda, Tagne HT. Kamdem, Symmetry breaking, coexisting bubbles, multistability, and its control for a simple jerk system with hyperbolic tangent nonlinearity. Complexity 2020 (2020)

  34. LK. Kengne, J. Kengne, JRM. Pone, HTK. Tagne, Dynamics, control and symmetry breaking aspects of an infinite-equilibrium chaotic system. Int. J. Dyn. Control:1-18 (2020)

  35. L.K. Kengne, J.R.M. Pone, H.T.K. Tagne, J. Kengne, Dynamics, control and symmetry breaking aspects of a single Opamp-based autonomous LC oscillator. AEU-International Journal of Electronics and Communications 118, 153146 (2020)

  36. L.K. Kengne, J.R.M. Pone, H.T.K. Tagne, J. Kengne, Dynamics, control and symmetry breaking aspects of a modified van der Pol-Duffing oscillator, and its analog circuit implementation. Analog Integrated Circ. Signal Process. 103(1), 73–93 (2020)

    Article  Google Scholar 

  37. A.S.K. Tsafack, R. Kengne, A. Cheukem, J.R.M. Pone, G. Kenne, Chaos control using self-feedback delay controller and electronic implementation in IFOC of 3-phase induction motor. Chaos Theory Appl. 2(1), 40–48 (2020)

    Google Scholar 

  38. Q. Lai, B. Norouzi, F. Liu, Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors. Chaos Solitons Fractals 114, 230–245 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Q. Lai, P.D.K. Kuate, F. Liu, H.H.-C. Iu, An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circ. Syst. II: express briefs 67(5), 1129–1133 (2019)

    Google Scholar 

  40. Q. Lai, Z. Wan, PDK. Kuate, H. Fotsin, Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Communications in Nonlinear Science and Numerical Simulation:105341 (2020)

  41. Q. Lai, Z. Wan, PDK. Kuate, Modelling and circuit realisation of a new no-equilibrium chaotic system with hidden attractor and coexisting attractors. Electronics Letters (2020)

  42. KG. HONORÉ, NNL. PARFAİT, C. Ainamon, ST. KİNGNİ, Theoretical and experimental investigations of a jerk circuit with two parallel diodes. Chaos Theory Appl. 2 (2):52-57 (2020)

  43. M.R. Guevara, L. Glass, M.C. Mackey, A. Shrier, Chaos in neurobiology. IEEE Trans. Syst. Man Cybernet. 4, 790–798 (1983)

    Article  MATH  Google Scholar 

  44. W.J. Freeman, Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential. IEEE Trans. Circ. Syst. 35(6), 781–783 (1988)

    Article  MathSciNet  Google Scholar 

  45. B. Bao, C. Chen, H. Bao, X. Zhang, Q. Xu, M. Chen, Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int. J. Bifurcation Chaos 29(04), 1930010 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. C. Chen, H. Bao, M. Chen, Q. Xu, B. Bao, Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU-International Journal of Electronics and Communications 111, 152894 (2019)

  47. C. Chen, J. Chen, H. Bao, M. Chen, B. Bao, Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    Article  MATH  Google Scholar 

  48. M.E. Cimen, Z.B. Garip, M.A. Pala, A.F. Boz, A. Akgul, Modelling of a Chaotic System Motion in Video with Artiıficial Neural Networks. Chaos Theory Appl. 1(1), 38–50 (2019)

    Google Scholar 

  49. Z. Dan, Huang W. zhi, Y. Huang, Chaos and rigorous verification of horseshoes in a class of Hopfield neural networks. Neural Comput. Appl. 19 (1):159-166 (2010)

  50. S. Doubla Isaac, Z.T. Njitacke, J. Kengne, Effects of low and high neuron activation gradients on the dynamics of a simple 3D hopfield neural network. Int. J. Bifurcation Chaos 30(8), 2050159 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Z. Njitacke, J. Kengne, H. Fotsin, A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int. J. Dyn. Control 7(1), 36–52 (2019)

    Article  MathSciNet  Google Scholar 

  52. Z. Njitacke, J. Kengne, T.F. Fozin, B. Leutcha, H. Fotsin, Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int. J. Dyn. Control 7(3), 823–841 (2019)

    Article  MathSciNet  Google Scholar 

  53. Z. Njitacke, J. Kengne, Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int. J. Electron. Commun. 93, 242–252 (2018)

    Article  Google Scholar 

  54. Z.T. Njitacke, J. Kengne, Nonlinear dynamics of three-neurons-based Hopfield neural networks (HNNs): remerging Feigenbaum trees, coexisting bifurcations and multiple attractors. J. Circ. Syst. Comput. 28(07), 1950121 (2019)

    Article  Google Scholar 

  55. Z.T. Njitacke, S.D. Isaac, J. Kengne, A.N. Negou, G.D. Leutcho, Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Euro. Phys. J. Special Topics 229(5), 1133–1154 (2020)

    Article  ADS  Google Scholar 

  56. Z.T. Njitacke, J. Kengne, H.B. Fotsin, Coexistence of multiple stable states and bursting oscillations in a 4D Hopfield neural network. Circ. Syst. Signal Process. 39(6), 3424–3444 (2020)

    Article  MATH  Google Scholar 

  57. K. Rajagopal, M. Tuna, A. Karthikeyan, İ Koyuncu, P. Duraisamy, A. Akgul, Dynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order FPGA implementation. Euro. Phys. J. Special Topics 228(7), 2065–2080 (2019)

    Article  ADS  Google Scholar 

  58. Q. Xu, Z. Song, H. Bao, M. Chen, B. Bao, Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU-Int. J. Electron. Commun. 96, 66–74 (2018)

    Article  Google Scholar 

  59. Q. Xu, Z. Song, H. Qian, M. Chen, P. Wu, B. Bao, Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network. Euro. Phys. J. Special Topics 227(6), 777–786 (2018)

    Article  ADS  Google Scholar 

  60. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(7), 3088–3092 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Njitacke Z. Tabekoueng, Doubla I. Sami, J. Kengne, A. Cheukem, Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (2):023101 (2020)

  62. B. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, Y. Yu, Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11, 81 (2017)

    Article  Google Scholar 

  63. N.H. Alombah, H. Fotsin, K. Romanic, Coexistence of multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurcation Chaos 27(05), 1750067 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018 (2018)

  65. L. Chua, Everything You Wish to Know About Memristors but Are Afraid to Ask. In: Handbook of Memristor Networks. Springer, pp 89-157 (2019)

  66. S. Duan, Z. Dong, X. Hu, L. Wang, H. Li, Small-world Hopfield neural networks with weight salience priority and memristor synapses for digit recognition. Neural Comput. Appl. 27(4), 837–844 (2016)

    Article  Google Scholar 

  67. J. Kengne, A.N. Negou, D. Tchiotsop, Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88(4), 2589–2608 (2017)

    Article  Google Scholar 

  68. Z. Njitacke, J. Kengne, R.W. Tapche, F. Pelap, Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Solitons Fractals 107, 177–185 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)

    Article  ADS  Google Scholar 

  70. V.-T. Pham, C. Volos, S. Jafari, X. Wang, S. Vaidyanathan, Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Materials Rapid Commun. 8(11–12), 1157–1163 (2014)

    Google Scholar 

  71. A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis, Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7(1), 1–9 (2016)

    Article  Google Scholar 

  72. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Materials 16(1), 101–108 (2017)

    Article  ADS  Google Scholar 

  73. J. Yang, L. Wang, Y. Wang, T. Guo, A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227, 142–148 (2017)

    Article  Google Scholar 

  74. Y. Zhang, X. Wang, Y. Li, E.G. Friedman, Memristive model for synaptic circuits. IEEE Trans. Circ. Syst. II 64(6), 767–771 (2016)

    Google Scholar 

  75. S. He, K. Sun, Y. Peng, L. Wang, Modeling of discrete fracmemristor and its application. AIP Advances 10(1), 015332 (2020)

  76. Y. Peng, S. He, K. Sun, A higher dimensional chaotic map with discrete memristor. AEU-International Journal of Electronics and Communications 129, 153539 (2021)

  77. S. Zhang, J. Zheng, X. Wang, Z. Zeng, A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos, Solitons & Fractals 145, 110761 (2021)

  78. M. Chen, X. Ren, H.-G. Wu, Q. Xu, B.-c Bao, Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inform. Technol. Electron. Eng. 20(9), 1706–1716 (2019)

    Article  Google Scholar 

  79. J. Gu, C. Li, Y. Chen, H.H. Iu, T. Lei, A conditional symmetric memristive system with infinitely many chaotic attractors. IEEE Access 8, 12394–12401 (2020)

    Article  Google Scholar 

  80. D.H. Kobe, Helmholtz’s theorem revisited. Am. J. Phys. 54(5), 552–554 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  81. X. Hu, C. Liu, L. Liu, J. Ni, Y. Yao, Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2018)

    Article  Google Scholar 

  82. C. Chen, F. Min, Y. Zhang, B. Bao, Memristive Electromagnetic Induction Effects on Hopfield Neural Network. Research Square (2021). https://doi.org/10.21203/rs.3.rs-722277/v1

  83. J. Ma, F. Wu, W. Jin, P. Zhou, T. Hayat, Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (4):053108 (2017)

  84. A. Xin-lei, Z. Li, Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dyn. 94(4), 2995–3010 (2018)

    Article  Google Scholar 

  85. S. Xin-Lin, J. Wu-Yin, M. Jun, Energy dependence on the electric activities of a neuron. Chinese Physics B 24(9), 128710 (2015)

  86. Y. Wang, C. Wang, G. Ren, J. Tang, W. Jin, Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89(3), 1967–1987 (2017)

    Article  Google Scholar 

  87. A. Babloyantz, C. Lourenço, Brain chaos and computation. Int. J. Neural Syst. 7(04), 461–471 (1996)

    Article  Google Scholar 

  88. L. Fortuna, M. Frasca, A. Rizzo, Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans. Instrumentation Measurement 52(5), 1809–1814 (2003)

    Article  Google Scholar 

  89. B. Bao, L. Hou, Y. Zhu, H. Wu, M. Chen, Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU-International Journal of Electronics and Communications 121, 153235 (2020)

  90. S. Duan, X. Liao, An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys. Lett. A 369(1–2), 37–43 (2007)

    Article  ADS  Google Scholar 

  91. H. Öztürk, A novel chaos application to observe performance of asynchronous machine under chaotic load. Chaos Theory Appl. 2(2), 90–97 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2021/RD/022.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubla, I.S., Ramakrishnan, B., Tabekoueng, Z.N. et al. Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN. Eur. Phys. J. Spec. Top. 231, 2371–2385 (2022). https://doi.org/10.1140/epjs/s11734-021-00372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00372-x

Navigation