Skip to main content
Log in

Neuroimaging with light field microscopy: a mini review of imaging systems

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Light-field microscopy is an emerging technique that allows fast-speed volumetric imaging of the sample at microscale resolution. In the past years, the parallel development of light-field microscopy and genetically encoded calcium sensors has enabled a variety of fast-speed and large-scale neuroimaging at high resolution and sensitivity. These neuroimaging techniques have greatly enhanced our understanding of the mechanism under brain function and expedited our steps of decoding brain patterns. This review provides an overview of different versions of light-field microscopy used in neural imaging, and also offers a historic development outline of genetically encoded calcium sensors. Following that, the review intensively discussed light-field imaging of zebrafish neural activity. In the last section, we summarized the review and also envisioned the future of volumetric neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Levoy et al., Light field microscopy, in ACM SIGGRAPH 2006 Papers, pp. 924–934 (2006)

  2. M.B. Ahrens et al., Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10(5), 413–420 (2013)

    Article  Google Scholar 

  3. F.O. Fahrbach et al., Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21(18), 21010–21026 (2013)

    Article  ADS  Google Scholar 

  4. T.V. Truong et al., High-contrast, synchronous volumetric imaging with selective volume illumination microscopy. Commun. Biol. 3(1), 1–8 (2020)

    Article  MathSciNet  Google Scholar 

  5. O. Skocek et al., High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15(6), 429–432 (2018)

    Article  Google Scholar 

  6. L.L. Looger, O. Griesbeck, Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22(1), 18–23 (2012)

    Article  Google Scholar 

  7. A. Pal, L. Tian, Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr. Opin. Chem. Biol. 57, 166–176 (2020)

    Article  Google Scholar 

  8. Y. Shen et al., Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci. Res. 152, 3–14 (2020)

    Article  Google Scholar 

  9. X. Zhou, S. Mehta, J. Zhang, Genetically encodable fluorescent and bioluminescent biosensors light up signaling networks. Trends Biochem. Sci. 45(10), 889–905 (2020)

  10. M.Z. Lin, M.J. Schnitzer, Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19(9), 1142–53 (2016)

    Article  Google Scholar 

  11. W. Yang, R. Yuste, In vivo imaging of neural activity. Nat. Methods 14(4), 349 (2017)

    Article  Google Scholar 

  12. L. Zarowny et al., Bright and high-performance genetically encoded Ca\(^{2+}\) indicator based on mNeonGreen fluorescent protein. ACS Sens. 5(7), 1959–1968 (2020)

    Article  Google Scholar 

  13. M. Levoy, P. Hanrahan, Light field rendering, in Proceedings of the 23rd annual conference on computer graphics and interactive techniques (1996)

  14. I. Ihrke, J. Restrepo, L. Mignard-Debise, Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Process. Mag. 33(5), 59–69 (2016)

    Article  ADS  Google Scholar 

  15. M. Levoy, Z. Zhang, I. McDowall, Recording and controlling the 4D light field in a microscope using microlens arrays. J. Microsc. 235(2), 144–162 (2009)

    Article  MathSciNet  Google Scholar 

  16. R. Prevedel et al., Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11(7), 727–730 (2014)

    Article  Google Scholar 

  17. N.. C. Pégard et al., Compressive light-field microscopy for 3D neural activity recording. Optica 3(5), 517–524 (2016)

    Article  ADS  Google Scholar 

  18. C. Guo et al., Fourier light-field microscopy. Opt. Express 27(18), 25573–25594 (2019)

    Article  ADS  Google Scholar 

  19. G. De Medeiros et al., Confocal multiview light-sheet microscopy. Nat. Commun. 6(1), 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  20. M. Kumar et al., Integrated one-and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express 26(10), 13027–13041 (2018)

    Article  ADS  Google Scholar 

  21. J.M. Wolff et al., Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes, in Three-dimensional and multidimensional microscopy: image acquisition and processing XXV, International Society for Optics and Photonics (2018)

  22. D. Wang et al., Hybrid light-sheet and light-field microscope for high resolution and large volume neuroimaging. Biomed. Opt. Express 10(12), 6595–6610 (2019)

    Article  Google Scholar 

  23. M.B. Bouchard et al., Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9(2), 113–119 (2015)

    Article  ADS  Google Scholar 

  24. S. Madaan et al., Single-objective selective-volume illumination microscopy enables high-contrast light-field imaging. Opt. Lett. 46(12), 2860–2863 (2021)

    Article  ADS  Google Scholar 

  25. M. Kumar, Y. Kozorovitskiy, Tilt-invariant scanned oblique plane illumination microscopy for large-scale volumetric imaging. Opt. Lett. 44(7), 1706–1709 (2019)

    Article  ADS  Google Scholar 

  26. N. Wagner et al., Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods 16(6), 497–500 (2019)

    Article  Google Scholar 

  27. Z. Zhang et al., Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat. Biotechnol. 39(1), 74–83 (2021)

    Article  Google Scholar 

  28. D. Wang et al., High-resolution light-field microscopy with patterned illumination. Biomed. Opt. Express 12(7), 3887–3901 (2021)

    Article  Google Scholar 

  29. S.A. Goorden, J. Bertolotti, A.P. Mosk, Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express 22(15), 17999–18009 (2014)

    Article  ADS  Google Scholar 

  30. Z. Fu et al., Light field microscopy based on structured light illumination. Opt. Lett. 46(14), 3424–3427 (2021)

    Article  ADS  Google Scholar 

  31. J. Mertz, J. Kim, Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J. Biomed. Opt. 15(1), 016027 (2010)

    Article  ADS  Google Scholar 

  32. M.A. Taylor et al., Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution. Optica 5(4), 345–353 (2018)

    Article  ADS  Google Scholar 

  33. H. Nagahara et al., Programmable aperture camera using LCoS, in European conference on computer vision (Springer, 2010)

  34. H. Nagahara et al., Programmable aperture camera using LCoS. IPSJ Trans. Comput. Vis. Appl. 4, 1–11 (2012)

    Article  Google Scholar 

  35. C. Zuo et al., Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging. Opt. Laser Eng. 80, 24–31 (2016)

    Article  Google Scholar 

  36. M. Yao et al., Reflection light-field microscope with a digitally tunable aperture by single-pixel imaging. Opt. Express 27(23), 33040–33050 (2019)

    Article  ADS  Google Scholar 

  37. J. Liu et al., Coded-aperture broadband light field imaging using digital micromirror devices. Optica 8(2), 139–142 (2021)

    Article  ADS  Google Scholar 

  38. E. Kwan, Y. Qin, H.J.O.C. Hua, High resolution, programmable aperture light field laparoscope for quantitative depth mapping. OSA Contin. 3(2), 194–203 (2020)

    Article  Google Scholar 

  39. G. Kuo et al., On-chip fluorescence microscopy with a random microlens diffuser. Opt. Express 28(6), 8384–8399 (2020)

    Article  ADS  Google Scholar 

  40. G.S. Baird, D.A. Zacharias, R.Y. Tsien, Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. 96(20), 11241–6 (1999)

    Article  ADS  Google Scholar 

  41. J. Nakai, M. Ohkura, K. Imoto, A high signal-to-noise Ca(2\(+\)) probe composed of a single green fluorescent protein. Nat. Biotechnol. 19(2), 137–41 (2001)

    Article  Google Scholar 

  42. T.W. Chen et al., Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295–300 (2013)

    Article  ADS  Google Scholar 

  43. A. Miyawaki et al., Fluorescent indicators for Ca\(^{2+}\) based on green fluorescent proteins and calmodulin. Nature 388(6645), 882–7 (1997)

    Article  ADS  Google Scholar 

  44. T. Nagai et al., Expanded dynamic range of fluorescent indicators for Ca\(^{2+}\) by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. 101(29), 10554–9 (2004)

    Article  ADS  Google Scholar 

  45. K. Horikawa et al., Spontaneous network activity visualized by ultrasensitive Ca\(^{2+}\) indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010)

    Article  Google Scholar 

  46. H. Dana et al., High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16(7), 649–657 (2019)

    Article  Google Scholar 

  47. M. Inoue et al., Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177(5), 1346–1360 (2019)

    Article  Google Scholar 

  48. L. Tian et al., Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6(12), 875–81 (2009)

    Article  Google Scholar 

  49. J. Akerboom et al., Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32(40), 13819–40 (2012)

    Article  Google Scholar 

  50. T. Schrödel et al., Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10(10), 1013–1020 (2013)

    Article  Google Scholar 

  51. N. Vladimirov et al., Light-sheet functional imaging in fictively behaving zebrafish. Nat. Methods 11(9), 883–884 (2014)

    Article  Google Scholar 

  52. M.A. Mohr et al., jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. Nat. Methods 17(7), 694–697 (2020)

    Article  Google Scholar 

  53. Y. Qian et al., A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16(2), 171–174 (2019)

    Article  Google Scholar 

  54. M. Mank et al., A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5(9), 805–11 (2008)

    Article  Google Scholar 

  55. T. Thestrup et al., Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11(2), 175–82 (2014)

    Article  Google Scholar 

  56. D. Zhang, E. Redington, Y. Gong, Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Commun. Biol. 4(1), 924 (2021)

    Article  Google Scholar 

  57. A.A. Shemetov et al., A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2020)

  58. K.M. Kwan et al., The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236(11), 3088–3099 (2007)

    Article  Google Scholar 

  59. A. Tozzi, M. Zare, A.A. Benasich, New perspectives on spontaneous brain activity: dynamic networks and energy matter. Front. Hum. Neurosci. 10, 247 (2016)

    Article  Google Scholar 

  60. L. Cong et al., Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). Elife 6, e28158 (2017)

    Article  Google Scholar 

  61. E.A. Mukamel, A. Nimmerjahn, M.J. Schnitzer, Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63(6), 747–760 (2009)

    Article  Google Scholar 

  62. K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)

    Article  ADS  Google Scholar 

  63. D. Wang, Y. Wu, J. Xia, Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics 3(1), 010901 (2016)

    Article  Google Scholar 

  64. Y. Bando et al., Comparative evaluation of genetically encoded voltage indicators. Cell Rep. 26(3), 802-813.e4 (2019)

    Article  Google Scholar 

  65. A.S. Abdelfattah et al., Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365(6454), 699–704 (2019)

    Article  ADS  Google Scholar 

  66. M.V. Monakhov et al., Screening and cellular characterization of genetically encoded voltage indicators based on near-infrared fluorescent proteins. ACS Chem. Neurosci. 11(21), 3523–3531 (2020)

  67. H. Bischof et al., Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun. 8(1), 1422 (2017)

    Article  ADS  Google Scholar 

  68. Y. Shen et al., Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun. Biol. 2(1), 18 (2019)

    Article  Google Scholar 

  69. F. Sun et al., A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174(2), 481-496.e19 (2018)

    Article  Google Scholar 

  70. J. Feng et al., A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102(4), 745–761 (2019)

    Article  Google Scholar 

  71. M. Jing et al., A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36(8), 726–737 (2018)

    Article  Google Scholar 

  72. N. Wagner et al., Deep learning-enhanced light-field imaging with continuous validation. Nat. Methods 18(5), 557–563 (2021)

    Article  Google Scholar 

  73. Z. Wang et al., Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods 18(5), 551–556 (2021)

    Article  Google Scholar 

  74. E.A. Pnevmatikakis et al., Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2), 285–299 (2016)

    Article  Google Scholar 

  75. S. Soltanian-Zadeh et al., Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning. Proc. Natl. Acad. Sci. 116(17), 8554–8563 (2019)

  76. Y. Xue et al., Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Sci. Adv. 6(43), eabb7508 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Startup Grant of Nanjing University of Aeronautics and Astronautics (Grant No. 90YAH21120), Research Initiation Project of Zhejiang Lab (Grant No. 113010-PI2108), and Center-initiated Research Project of Zhejiang Lab (Grant No. 2021MH0AL01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Depeng Wang or Diming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhu, Z., Xu, Z. et al. Neuroimaging with light field microscopy: a mini review of imaging systems. Eur. Phys. J. Spec. Top. 231, 749–761 (2022). https://doi.org/10.1140/epjs/s11734-021-00367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00367-8

Navigation