Skip to main content
Log in

Multistability and noise-induced transitions in the model of bidirectionally coupled neurons with electrical synaptic plasticity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We systematically study the effects of synaptic plasticity in the model describing dynamics of electrically coupled neuron cells. Neurotransmission through electrical synapses plays an important role in the spike synchrony among neurons in the neural network. Synaptic plasticity is known to arise from the transjunction voltage-dependent conductance of channels formed, for instance, by Connexin-36 (Cx36), the principal gap junction protein of electrical synapses between inhibitory interneurons in vertebrates. A coupling strength between neurons is modulated in a complex manner, and the significance of this regulation in the presence of a stimulus that changes the firing properties of the coupled neurons, is still unknown. The neuron model based on the FitzHung–Nagumo equations exhibits multistability when two neurons are linearly bidirectionally coupled, i.e., two new resting states emerge in addition to the original either resting or spiking state depending on the ionic currents, observed in the solitary neuron. Synaptic plasticity of electrical neurotransmission is accounted in the model by making the coupling strength a linear function of the transjunction current so that the coupling becomes quadratic. This nonlinearity in synaptic transmission results in very rich dynamics leading to chaos in the neuron spikes via a cascade of period-doubling bifurcations as the external current is changed, as well as to amplitude-dependent signal attenuation similar to a low-pass signal filtering effect. The latter property of electrical synapses is consistent with experimental data involving Cx36-mediated electrical communication. In the presence of multiplicative noise, inherent to neural systems, intermittent transitions between the coexisting states occur. In the case of linear coupling, the transjunctional current switches between three states, whereas nonlinearity in coupling destroys one of the coexisting states so that multistate intermittency is converted into on-off intermittency. These results are consistent with physiological experiments on random switches between different states of a single gap junction channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. A.E. Hramov, A.E. Koronovskii, M.K. Kurovskaya, A.A. Ovchinnikov, S. Boccaletti, Phys. Rev. E 76, 7026206 (2007)

    Article  ADS  Google Scholar 

  3. R. Sevilla-Escoboza, J.M. Buldú, A.N. Pisarchik, S. Boccaletti, R. Gutiérrez, Phys. Rev. E 91, 032902 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Huerta-Cuellar, A.N. Pisarchik, Y.O. Barmenkov, Phys. Rev. E 78, 035202 (2008)

    Article  ADS  Google Scholar 

  5. A.N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, M. Taki, Phys. Rev. Lett. 107, 274101 (2011)

    Article  ADS  Google Scholar 

  6. A.N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, Phys. Rev. E 86, 056219 (2012)

    Article  ADS  Google Scholar 

  7. R. Sevilla-Escoboza, A.N. Pisarchik, R. Jaimes-Reátegui, G. Huerta-Cuellar, Proc. R. Soc. A 471, 20150005 (2015)

    Article  ADS  Google Scholar 

  8. J.L. Cabrera, J. Milnor, Phys. Rev. Lett. 89, 158702 (2002)

    Article  ADS  Google Scholar 

  9. P. Gong, A.R. Nikolaev, C. van Leeuwen, Phys. Rev. E 76, 011904 (2007)

    Article  ADS  Google Scholar 

  10. E. Sitnikova, A.E. Hramov, V.V. Grubov, A.A. Ovchinnkov, A.A. Koronovsky, Brain Res. 1436, 147 (2012)

    Article  Google Scholar 

  11. A.N. Pisarchik, R. Jaimes-Reategui, C. Magallón- García, C.O. Castillo-Morales, Biol. Cybern. 108, 397 (2014)

    Article  Google Scholar 

  12. A.V. Andreev, E.N. Pitsik, V.V. Makarov, A.N. Pisarchik, A.E. Hramov, Eur. Phys. J. Spec. Top. 227, 1029 (2018)

    Article  Google Scholar 

  13. A.P. Moreno, V.M. Berthoud, G. Peérez-Palacios, E.M. Pérez-Armendariz, Am. J. Physiol. Endocrinol. Metab. 288, E948 (2005)

    Article  Google Scholar 

  14. X. Li, G. Xiang-Qun, B. Donglin, Biophys. J . 99, 2077 (2010)

    Article  Google Scholar 

  15. W. Singer, C.M. Gra, Annu. Rev. Neurosci. 18, 555 (1995)

    Article  Google Scholar 

  16. R. Ritz, T.J. Sejnowski, Curr. Opin. Neurobiol. 7, 536 (1997)

    Article  Google Scholar 

  17. D.W. Laird, M. Castillo, L. Kasprzak, J. Cell Biol. 131, 1193 (1995)

    Article  Google Scholar 

  18. W.H. Evans, P.E. Martin, Mol. Membr. Biol. 19, 121 (2002)

    Article  Google Scholar 

  19. M.V.L. Bennett, R.S. Zukin, Neuron 41, 495 (2004)

    Article  Google Scholar 

  20. M.A. Whittington, R.D. Traub, J.G.R. Jefferys, Nature 373, 612 (1995)

    Article  ADS  Google Scholar 

  21. S.R. Cobb, E.H. Buhl, K. Halasy, O. Paulsen, P. Somogyi, Nature 378, 75 (1995)

    Article  ADS  Google Scholar 

  22. K. Willecke, J. Eiberger, J. Degen, D. Eckardt, A. Romualdi, M. Guldenagel, U. Deutsch, G. Sohl, Biol. Chem. 383, 725 (2002)

    Article  Google Scholar 

  23. N. Belluardo, G. Mudo, A. Trovato-Salinaro, S. Le Gurun, A. Charollais, V. Serre-Beinier, G. Amato, J.A. Haefliger, P. Meda, D.F. Condorelli, Brain Res. 865, 121 (2000)

    Article  Google Scholar 

  24. S. Boccaletti, A.N. Pisarchik, C.I. del Genio, A. Amann, Synchronization: From Coupled Systems to Complex Networks (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  25. C.I. De Zeeuw, E. Chorev, A. Devor, Y. Manor, R.S. Van Der Giessen, M.T. De Jeu, C.C. Hoogenraad, J. Bijman, T.J. Ruigrok, P. French et al., J. Neurosci. 23, 4700 (2003)

    Article  Google Scholar 

  26. M.R. Deans, D.L. Paul, Cell Commun. Adhes. 8, 361 (2001)

    Article  Google Scholar 

  27. S.G. Hormuzdi, I. Pais, F.E.N. LeBeau, S.K. Towers, A. Rozov, E.H. Buhl, M.A. Whittington, H. Monyer, Neuron 31, 487 (2001)

    Article  Google Scholar 

  28. M.A. Long, M.R. Deans, D.L. Paul, B.W. Connors, J. Neurosci. 22, 10898 (2002)

    Article  Google Scholar 

  29. M. Srinivas, M. Costa, Y. Gao, A. Fort, G.I. Fishman, D.C. Spray, J. Physiol. 517, 673 (1999)

    Article  Google Scholar 

  30. M. Srinivas, R. Rozental, T. Kojima, R. Dermietzel, M. Mehler, D.F. Condorelli, J.A. Kessler, D.C. Spray, J. Neurosci. 19, 9848 (1999)

    Article  Google Scholar 

  31. L.A. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  32. G. Lemasson, S. Lemasson, M. Moulins, Prog. Biophys. Mol. Biol. 64, 201 (1995)

    Article  Google Scholar 

  33. R.D. Pinto, P. Varona, A.R. Volkovskii, A. Szücs, H.D.I. Abarbanel, M.I. Rabinovich, Phys. Rev. E 62, 2644 (2000)

    Article  ADS  Google Scholar 

  34. R.A. FitzHugh, Biophys. J . 1, 445 (1961)

    Article  Google Scholar 

  35. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. Inst. Radio Eng. 50, 2061 (1962)

    Google Scholar 

  36. C. Koch, Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, Oxford, 1998)

    Book  Google Scholar 

  37. A.C. Scott, Neuroscience: A Mathematical Primer (Springer, New York, 1999)

    MATH  Google Scholar 

  38. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, New York, 2002)

    Book  MATH  Google Scholar 

  39. S. Binczak, S. Jacquir, J.M. Bilbault, V.B. Kazantsev, V.I. Nekorkin, Neural Netw. 19, 684 (2006)

    Article  Google Scholar 

  40. B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  41. R. Toral, C.R. Mirasso, J.D. Gunton, Europhys. Lett. 61, 162 (2003)

    Article  ADS  Google Scholar 

  42. M. Courbage, V.B. Kazantsev, V.I. Nekorkin, M. Senneret, Chaos 14, 1148 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Hoff, J.V. dos Santos, C. Manchein, H.A. Albuquerque, Eur. Phys. J. B 87, 151 (2014)

  44. J. Rauch, J. Smaller, Adv. Math. 27, 12 (1978)

  45. A.N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza, J.H. García-Lopez, V.B. Kazantsev, Opt. Laser. Eng. 49, 736 (2011)

    Article  Google Scholar 

  46. A.N. Pisarchik, R. Sevilla-Escoboza, R. Jaimes-Reátegui, G. Huerta-Cuellar, J.H. García-López, V.B. Kazantsev, Sensors (Basel) 13, 17322 (2013)

    Article  ADS  Google Scholar 

  47. A.N. Pisarchik, R. Sevilla-Escoboza, R. Jaimes-Reátegui, G. Huerta-Cuellar, V.B. Kazantsev, In: Nonlinear Dynamics of Electronic Systems, Series: Communications in Computer and Information Science, Vol. 438, pp. 173–180. Eds: Mladenov VM, Ivanov PCh. Springer, 2014

  48. K. Tsaneva-Atanasova, C. Zimliki, R. Bertram, A. Sherman, Biophys. J . 90, 3434 (2006)

    Article  Google Scholar 

  49. M. Galarreta, S. Hestrin, Nature 402, 72 (1999)

    Article  ADS  Google Scholar 

  50. J.R. Gibson, M. Beierlein, B.M. Connors, J. Neurophysiol. 93, 467 (2005)

    Article  Google Scholar 

  51. D. González-Nieto, J.M. Gómez-Hernández, B. Larrosa, C. Gutiérrez, M.D. Muñoz, Proc. Natl. Acad. Sci. USA 105, 17169 (2008)

    Article  ADS  Google Scholar 

  52. S. Tanabe, K. Pakdaman, Phys. Rev. E 63, 031911 (2001)

    Article  ADS  Google Scholar 

  53. L.A. Safonov, Y. Yamamoto, Phys. Rev. E 73, 031914 (2006)

    Article  ADS  Google Scholar 

  54. N. Palacios-Prado, S. Chapuis, A. Panjkovich, J. Fregeac, J.I. Nagy, F.F. Bukauskas, Nat. Commun. 5, 4667 (2015)

    Article  ADS  Google Scholar 

  55. A.N. Pisarchik, V.V. Grubov, V.A. Maksimenko, A. Lüttjohann, N.S. Frolov, C. Marqués-Pascual, D. Gonzalez-Nieto, M.V. Khramova, A.E. Hramov, Eur. Phys. J. Spec. Top. 227, 921 (2018)

    Article  Google Scholar 

  56. N.S. Frolov, V.V. Grubov, V.A. Maksimenko, A.N. Pavlov, E. Sitnikova, A.N. Pisarchik, J. Kurths, A.E. Hramov, Sci. Rep. 9, 7243 (2019)

    Article  ADS  Google Scholar 

  57. Y.-C. Lai, C. Grebogi, Phys. Rev. E 52, R3313 (1995)

    Article  ADS  Google Scholar 

  58. A.N. Pisarchik, V.J. Pinto-Robledo, Phys. Rev. E 66, 027203 (2002)

    Article  ADS  Google Scholar 

  59. P.M. Esir, S.Y. Gordleeva, A.Y. Simonov, A.N. Pisarchik, V.B. Kazantsev, Phys. Rev. E 98, 052401 (2018)

    Article  ADS  Google Scholar 

  60. L. Ryashko, E. Slepukhina, Phys. Rev. E 96, 032212 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  61. L. Ryashko, Chaos 28, 033602 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. I. Bashkirtseva, L. Ryashko, Chaos 31, 053101 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 19-12-00050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pisarchik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimes-Reátegui, R., Huerta-Cuellar, G., García-López, J.H. et al. Multistability and noise-induced transitions in the model of bidirectionally coupled neurons with electrical synaptic plasticity. Eur. Phys. J. Spec. Top. 231, 255–265 (2022). https://doi.org/10.1140/epjs/s11734-021-00349-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00349-w

Navigation