Skip to main content
Log in

Fractal dimension-based viability analysis of cancer cell lines in lens-free holographic microscopy via machine learning

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Cell studies play an important role in the basis of studies on cancer diagnosis and treatment. Reliable viability assays on cancer cell studies are essential for the development of effective drugs. Lens-free digital in-line holographic microscopy has become a powerful tool in the characterization and viability analysis of microparticles such as cancer cells due to its advantages such as high efficiency, low cost, and flexibility to integrate with other components. This study is designed to perform viability tests using fractal dimensions of alive and dead cancer cells based on digital holographic microscopy and machine learning. In the in-line holography configuration, a microscopy assembly consisting of inexpensive components was built using an LED source, and the images were reconstructed using computational methods. The standard US Air Force Resolution Target was used to evaluate the capability of our imaging setup then holograms of stained cancer cells were recorded. To characterize individual cells, 19 different rotational invariant fractal dimension values were extracted from the images as features. An artificial neural network technique was employed for the classification of fractal features extracted from cells. The artificial neural network was compared with four other machine learning techniques through five different classification performance measures. The empirical results indicated that artificial neural networks performed better than compared classification techniques with accuracies of 99.65%. The method proposed in this paper provides a new method for the study of cell viability which has the advantages of high accuracy and potential for laboratory application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Wei et al., An evaluation approach of cell viability based on cell detachment assay in a single-channel integrated microfluidic chip. ACS Sens. 4(10), 2654–2661 (2019). https://doi.org/10.1021/acssensors.9b01061

    Article  Google Scholar 

  2. K. Yang, J. Wu, S. Santos, Y. Liu, L. Zhu, F. Lin, Recent development of portable imaging platforms for cell-based assays. Biosens. Bioelectron. 124–125(October 2018), 150–160 (2019). https://doi.org/10.1016/j.bios.2018.10.024

    Article  Google Scholar 

  3. J. Sun, A. Tárnok, X. Su, Deep learning-based single-cell optical image studies. Cytom. Part A 97(3), 226–240 (2020). https://doi.org/10.1002/cyto.a.23973

    Article  Google Scholar 

  4. Y. Wu, A. Ozcan, Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018). https://doi.org/10.1016/j.ymeth.2017.08.013

    Article  Google Scholar 

  5. M. Sher, R. Zhuang, U. Demirci, W. Asghar, Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn. 17(4), 351–366 (2017). https://doi.org/10.1080/14737159.2017.1285228

    Article  Google Scholar 

  6. J. Li, L. Dai, N. Yu, Z. Li, S. Li, Measurement of red blood cell size based on a lensless imaging system. Biotechnol. Appl. Biochem. (2020). https://doi.org/10.1002/bab.2057

    Article  Google Scholar 

  7. J. Kun, M. Smieja, B. Xiong, L. Soleymani, Q. Fang, The use of motion analysis as particle biomarkers in lensless optofluidic projection imaging for point of care urine analysis. Sci. Rep. 9(1), 17255 (2019). https://doi.org/10.1038/s41598-019-53477-8

    Article  ADS  Google Scholar 

  8. J. Mariën, R. Stahl, A. Lambrechts, C. van Hoof, A. Yurt, Color lens-free imaging using multi-wavelength illumination based phase retrieval. Opt. Express 28(22), 33002 (2020). https://doi.org/10.1364/oe.402293

    Article  ADS  Google Scholar 

  9. A.B. Dharmawan et al., Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy. Sci. Rep. 11(1), 3213 (2021). https://doi.org/10.1038/s41598-021-81098-7

    Article  ADS  Google Scholar 

  10. M. Rempfler et al., Tracing cell lineages in videos of lens-free microscopy. Med. Image Anal. 48, 147–161 (2018). https://doi.org/10.1016/j.media.2018.05.009

    Article  Google Scholar 

  11. M. Roy, D. Seo, S. Oh, J.W. Yang, S. Seo, A review of recent progress in lens-free imaging and sensing. Biosens. Bioelectron. 88, 130–143 (2017). https://doi.org/10.1016/j.bios.2016.07.115

    Article  Google Scholar 

  12. G. Scholz et al., Continuous live-cell culture imaging and single-cell tracking by computational lensfree LED microscopy. Sensors (Switzerland) 19(5), 1–13 (2019). https://doi.org/10.3390/s19051234

    Article  Google Scholar 

  13. Z. El-Schich, A. Mölder, H. Tassidis, P. Härkönen, M.F. Miniotis, A.G. Wingren, Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy. J. Struct. Biol. 189(3), 207–212 (2015). https://doi.org/10.1016/j.jsb.2015.01.010

    Article  Google Scholar 

  14. K. Yamashita, R. Tagawa, Y. Higami, E. Tokunaga, Noninvasive and safe cell viability assay for breast cancer MCF-7 cells using natural food pigment. Biology (Basel) 9(8), 1–14 (2020). https://doi.org/10.3390/biology9080227

    Article  Google Scholar 

  15. F. Piccinini, A. Tesei, C. Arienti, A. Bevilacqua, Cell counting and viability assessment of 2D and 3D cell cultures: expected reliability of the trypan blue assay. Biol. Proc. Online 19(1), 1–12 (2017). https://doi.org/10.1186/s12575-017-0056-3

    Article  Google Scholar 

  16. M.A. Pala, M.E. Çimen, Ö.F. Boyraz, M.Z. Yildiz, A.F. Boz, Meme Kanserinin Teşhis Edilmesinde Karar AğacıVe KNN Algoritmalarının KarşılaştırmalıBaşarım Analizi. Acad. Perspect. Procedia 2(3), 544–552 (2019). https://doi.org/10.33793/acperpro.02.03.47

    Article  Google Scholar 

  17. T. O’Connor, A. Anand, B. Andemariam, B. Javidi, Overview of cell motility-based sickle cell disease diagnostic system in shearing digital holographic microscopy. J. Phys. Photon. (2020). https://doi.org/10.1088/2515-7647/ab8a58

    Article  Google Scholar 

  18. D. De Bels et al., Hyperoxia alters ultrastructure and induces apoptosis in leukemia cell lines. Biomolecules 10(2), 1–14 (2020). https://doi.org/10.3390/biom10020282

    Article  Google Scholar 

  19. Ö.F. Boyraz, M.A. Pala, M.E. Çimen, Mikrobilgisayar TabanlıEl- Bilek Damar Örüntüleri Kullanılarak Biyometrik Kimlik Doğrulama İşleminin YapılmasıA microcomputer-based biometric authentication system using hand-wrist vein patterns. 2019(November), 593–600 (2019)

  20. C.L. Chen et al., Deep learning in label-free cell classification. Sci. Rep. 6(March), 1–16 (2016). https://doi.org/10.1038/srep21471

    Article  Google Scholar 

  21. A. Caliskan, M.E. Yuksel, H. Badem, A. Basturk, Performance improvement of deep neural network classifiers by a simple training strategy. Eng. Appl. Artif. Intell. 67, 14–23 (2018). https://doi.org/10.1016/j.engappai.2017.09.002

    Article  Google Scholar 

  22. Y. Wang, P. Ju, S. Wang, J. Su, W. Zhai, C. Wu, Identification of living and dead microalgae cells with digital holography and verified in the East China Sea. Mar. Pollut. Bull. 163(December 2020), 111927 (2021). https://doi.org/10.1016/j.marpolbul.2020.111927

    Article  Google Scholar 

  23. B. Klinkenberg, A review of methods used to determine the fractal dimension of linear features. Math. Geol. 26(1), 23–46 (1994)

    Article  Google Scholar 

  24. A.O. Öncel, Ö. Alptekin, Fraktal dağılım ve sismolojideki uygulamaları. Jeofizik Derg. 9(1) (1995)

  25. P. Kirci, E.A. Bayrak, The application of fractal analysis on thyroid ultrasound images. Acta Infologica 3(2), 89–90 (2019)

    Google Scholar 

  26. L. Yu, D. Zhang, K. Wang, W. Yang, Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognit. 98(11), 1791–1798 (2005)

    Article  ADS  Google Scholar 

  27. A. Sezer, A.B. Göktepe, S. Altun, Temel dayanımının fraktal boyut ile incelenmesi (2007)

  28. M.E. Çimen, Ö.F. Boyraz, Z. Garip, İ. Pehlivan, M.Z. Yildiz, A.F. Boz. Görüntü İşleme Tabanlı Kutu Sayma Yöntemi ile Fraktal Boyut Hesabı için Arayüz Tasarımı. Politek. Derg. 24(3), 867–878 (2021). https://doi.org/10.2339/politeknik.689421

  29. M.E. Cimen, O.F. Boyraz, M.Z. Yildiz, A.F. Boz, A new dorsal hand vein authentication system based on fractal dimension box counting method. Optik. 226, 165438 (2021)

  30. A.K. Bisoi, J. Mishra, On calculation of fractal dimension of images. Pattern Recognit. Lett. 22(6–7), 631–637 (2001). https://doi.org/10.1016/S0167-8655(00)00132-X

    Article  MATH  ADS  Google Scholar 

  31. E. Demireli, M. Ural, Hurst Üstel katsayisi araciliğiyla fraktal yapi analizi ve İMKB’de bir uygulama. Atatürk. Üniversitesi İktisadi ve İdari Bilim. Derg. 23(2), 243–255 (2009)

    Google Scholar 

  32. A. Uyar, D. Öztürk, Fraktal analizin yeryüzü araştırmalarında kullanılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilim. Derg. 17(4), 147–155 (2017)

    Google Scholar 

  33. Q. Huang, J.R. Lorch, R.C. Dubes, Can the fractal dimension of images be measured? Pattern Recognit. 27(3), 339–349 (1994). https://doi.org/10.1016/0031-3203(94)90112-0

    Article  ADS  Google Scholar 

  34. D.G. Voelz, Computational Fourier optics: a MATLAB Tutorial (SPIE Press, Bellingham, 2011), pp. 116–124

  35. T. Latychevskaia, H.W. Fink, Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl. Opt. 54(9), 2424–2434 (2015). https://doi.org/10.1364/AO.54.002424

  36. Z. Ren, Z. Xu, E.Y. Lam, End-to-end deep learning framework for digital holographic reconstruction. Adv. Photon. 1(01), 1 (2019). https://doi.org/10.1117/1.ap.1.1.016004

    Article  Google Scholar 

  37. L. Hervé et al., Alternation of inverse problem approach and deep learning for lens-free microscopy image reconstruction. Sci. Rep. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-020-76411-9

    Article  ADS  Google Scholar 

  38. S. Feng, J. Wu, Differential holographic reconstruction for lensless in-line holographic microscope with ultra-broadband light source illumination. Opt. Commun. 430(August 2018), 9–13 (2019). https://doi.org/10.1016/j.optcom.2018.08.033

    Article  ADS  Google Scholar 

  39. H.A. Ilhan, M. Dogar, M. Ozcan, Digital holographic microscopy and focusing methods based on image sharpness. J. Microsc. 255(3), 138–149 (2014). https://doi.org/10.1111/jmi.12144

    Article  Google Scholar 

  40. A. Bigerelle, Maxence; IOST, “Fractal dimension and classification of music’’. Chaos Solitons Fractals 11(14), 2179–2192 (2000)

    Article  ADS  Google Scholar 

  41. S.H. Rezatofighi, H. Soltanian-Zadeh, Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35(4), 333–343 (2011). https://doi.org/10.1016/j.compmedimag.2011.01.003

    Article  Google Scholar 

  42. M. E. Çimen, Z. Garip Batık, M. A. Pala, B. A. Fuat, A. Akgul, Modelling of chaotic motion video with artificial neural networks. Chaos Theory Appl. 1(1), 38–50 (2019)

    Google Scholar 

  43. K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, D.I. Fotiadis, Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015). https://doi.org/10.1016/j.csbj.2014.11.005

    Article  Google Scholar 

  44. M. Alcin, I. Koyuncu, M. Tuna, M. Varan, I. Pehlivan, A novel high speed artificial neural network-based chaotic true random number generator on field programmable gate array. Int. J. Circuit Theory Appl. 47(3), 365–378 (2019). https://doi.org/10.1002/CTA.2581

    Article  Google Scholar 

  45. M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alcin, İ Koyuncu, Hyperjerk multiscroll oscillators with megastability: analysis, FPGA implementation and a novel ANN-ring-based true random number generator. AEU Int. J. Electron. Commun. 112, 152941 (2019). https://doi.org/10.1016/J.AEUE.2019.152941

    Article  Google Scholar 

  46. S. Vaidyanathan et al., A novel ANN-based four-dimensional two-disk hyperchaotic dynamical system, bifurcation analysis, circuit realisation and FPGA-based TRNG implementation. Int. J. Comput. Appl. Technol. 62(1), 20–35 (2020). https://doi.org/10.1504/IJCAT.2020.103921

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Sakarya University of Applied Science Scientific Research Projects Coordination Unit (SUBU BAPK, Project Number: 2020-01-01-011). The author, Muhammed Ali PALA, is grateful to The Scientific and Technological Research Council of Turkey for granting a scholarship (TUBITAK, 2211-C) for him Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Ali Pala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pala, M.A., Çimen, M.E., Akgül, A. et al. Fractal dimension-based viability analysis of cancer cell lines in lens-free holographic microscopy via machine learning. Eur. Phys. J. Spec. Top. 231, 1023–1034 (2022). https://doi.org/10.1140/epjs/s11734-021-00342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00342-3

Navigation