Skip to main content
Log in

Kalman observers in estimating the states of chaotic neurons for image encryption under MQTT for IoT protocol

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Chaotic systems based on artificial neurons present high randomness levels that are desired for applications like data encryption. In this paper, the chaotic systems based on the Hopfield, Cellular, Aihara, and the Rulkov neural models are synchronized and implemented on Raspberry Pi, which allows connectivity to a Machine to Machine (M2M) broker that is available under MQTT for IoT protocol. The process of encryption synchronizes two chaotic systems called publisher and subscriber that are controlled by an M2M broker. The publisher sends data that can be recovered by the subscriber, whose state observers are used to estimating the time series of the chaotic neuron to decrypt the data, increasing at the same time the security of the encrypted message. We show that the classical Kalman filter, its extended version, and the recent novelty, the unscented Kalman filter, all of them are powerful techniques in estimating the states of chaotic neurons. The randomness is evaluated by NIST tests, and the image encryption process is evaluated by performing correlation, histogram, variance, entropy, NPCR, and UACI tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Kumari, S. Gupta, P. Sardana, A survey of image encryption algorithms. 3D Res. 8(4), 37 (2017)

    Article  Google Scholar 

  2. G. Kim, S. Kang, J. Park, K. Chung, An MQTT-based context-aware autonomous system in oneM2M architecture. IEEE Internet Things J. 6(5), 8519–8528 (2019). https://doi.org/10.1109/JIOT.2019.2919971

  3. L. Strous, S. von Solms, A. Zúquete, Security and privacy of the Internet of Things. Comput. Secur. 102(1), 102148 (2021)

    Article  Google Scholar 

  4. Z. Wang, A. Akgul, V.T. Pham, S. Jafari, Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dyn. 89(3), 1877–1887 (2017)

    Article  Google Scholar 

  5. X. Wang, U. Çavuşoğlu, S. Kacar, A. Akgul, V.T. Pham, S. Jafari, F.E. Alsaadi, X.Q. Nguyen, S-box based image encryption application using a chaotic system without equilibrium. Appl. Sci. 9(4), 781 (2019)

    Article  Google Scholar 

  6. Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.T. Pham, Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simul. 44, 449–459 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  8. S. Haykin, H. Leung, Chaotic model of sea clutter using a neural network, in Advanced Algorithms and Architectures for Signal Processing IV, vol. 1152 (International Society for Optics and Photonics, Bellingham, 1989), pp. 18–21

  9. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. X.-S. Yang, Q. Yuan, Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69(1–3), 232–241 (2005)

    Article  Google Scholar 

  11. X.-Y. Wang, Z.-M. Li, A color image encryption algorithm based on Hopfield chaotic neural network. Opt. Lasers Eng. 115, 107–118 (2019)

    Article  Google Scholar 

  12. E. Tlelo-Cuautle, J.D. Díaz-Muñoz, A.M. González-Zapata, R. Li, W.D. León-Salas, F.V. Fernández, O. Guillén-Fernández, I. Cruz-Vega, Chaotic image encryption using Hopfield and Hindmarsh–Rose neurons implemented on FPGA. Sensors 20(5), 1326 (2020)

    Article  ADS  Google Scholar 

  13. L.O. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MathSciNet  Google Scholar 

  14. F. Zou, J.A. Nossek, Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(3), 166–173 (1993)

    Article  MathSciNet  Google Scholar 

  15. B. Karakaya, V. Çelik, A. Gülten, Chaotic cellular neural network-based true random number generator. Int. J. Circuit Theory Appl. 45(11), 1885–1897 (2017)

    Article  Google Scholar 

  16. K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks. Phys. Lett. A 144(6–7), 333–340 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Xu, Z. Yang, J. Luo, A hardware implementation method of the Aihara chaotic neural network, in 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), vol. 1. IEEE (2016), pp. 1118–1121

  18. S. Li, Y. He, H. Cao, Necessary conditions for complete synchronization of a coupled chaotic Aihara neuron network with electrical synapses. Int. J. Bifurc. Chaos 29(05), 1950063 (2019)

    Article  MathSciNet  Google Scholar 

  19. N.F. Rulkov, Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86(1), 183 (2001)

    Article  ADS  Google Scholar 

  20. B. Ibarz, J.M. Casado, M.A. Sanjuán, Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)

    Article  ADS  Google Scholar 

  21. R. Lozano, M.A. Sanjuán, Fourier analysis of a delayed Rulkov neuron network. Commun. Nonlinear Sci. Numer. Simul. 75, 62–75 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Mata-Machuca, R. Martinez-Guerra, R. Aguilar-Lopez, Chaotic systems synchronization via high order observer design. J. Appl. Res. Technol. 9(1), 57–68 (2011)

    Article  Google Scholar 

  23. R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

  24. L. Kleeman, Understanding and applying Kalman filtering, in Proceedings of the Second Workshop on Perceptive Systems, Curtin University of Technology, Perth Western Australia (25–26 January 1996) (1996)

  25. B. Cazelles, G. Boudjema, N.P. Chau, Adaptive synchronization of globally coupled chaotic oscillators using control in noisy environments. Phys. D Nonlinear Phenom. 103(1–4), 452–465 (1997)

    Article  ADS  Google Scholar 

  26. R. Van Der Merwe, E.A. Wan, The square-root unscented Kalman filter for state and parameter-estimation, in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 6. IEEE (2001), pp. 3461–3464

  27. M. Adachi, K. Aihara, Associative dynamics in a chaotic neural network. Neural Netw. 10(1), 83–98 (1997)

    Article  Google Scholar 

  28. R. Hegger, H. Kantz, T. Schreiber, Practical implementation of nonlinear time series methods: the TISEAN package. Chaos Interdiscip. J. Nonlinear Sci. 9(2), 413–435 (1999)

    Article  Google Scholar 

  29. L.G. de la Fraga, E. Torres-Pérez, E. Tlelo-Cuautle, C. Mancillas-López, Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)

    Article  Google Scholar 

  30. M. Irfan, A. Ali, M.A. Khan, M. Ehatisham-ul Haq, S.N. Mehmood Shah, A. Saboor, W. Ahmad, Pseudorandom number generator (PRNG) design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics 9(1), 104 (2020)

    Article  Google Scholar 

  31. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications-special publication 800-22 rev1a. Technical Report, April (2010)

  32. F.L. Lewis, L. Xie, D. Popa, Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  33. G. Welch, G. Bishop et al., An introduction to the Kalman filter (1995). https://www.semanticscholar.org/paper/Welch-%26-Bishop-%2C-An-Introduction-to-the-Kalman-2-1-Welch-Bishop/3d190dd77d51246d58fc70efa6d3c486f6b1da25

  34. S.J. Julier, J.K. Uhlmann, New extension of the Kalman filter to nonlinear systems, in Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068. International Society for Optics and Photonics, Bellingham (1997), pp. 182–193

  35. E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373). IEEE (2000), pp. 153–158

  36. S. Lv, J. Chen, Z. Liu, UDUT continuous-discrete unscented Kalman filtering, in 2008 Second International Symposium on Intelligent Information Technology Application, vol. 2. IEEE (2008), pp. 876–879

  37. S. Sarkka, On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007)

    Article  MathSciNet  Google Scholar 

  38. W. Zhang, Z. Zhu, H. Yu, A symmetric image encryption algorithm based on a coupled logistic–Bernoulli map and cellular automata diffusion strategy. Entropy 21(5), 504 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Wu, J.P. Noonan, S. Agaian et al., NPCR and UACI randomness tests for image encryption. Cyber J. multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 1(2), 31–38 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Muñoz, J.D., Cruz-Vega, I., Tlelo-Cuautle, E. et al. Kalman observers in estimating the states of chaotic neurons for image encryption under MQTT for IoT protocol. Eur. Phys. J. Spec. Top. 231, 945–962 (2022). https://doi.org/10.1140/epjs/s11734-021-00319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00319-2

Navigation