Skip to main content
Log in

Laplace equations on the fractal cubes and Casimir effect

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, we have generalized fractal calculus on fractal Cantor cubes. The mass function on fractal Cantor cubes is defined. Then, we use the mass function to define integral staircase function on fractal Cantor cubes. Using the integral staircase function, the fractal derivatives and integrals for a function with fractal Cantor cubes are defined. Fractal Laplace equations are suggested and their solutions are plotted to show more details. As application, Casimir effect is modeled by fractal Laplace equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)

    Google Scholar 

  2. G.A. Edgar, Integral, Probability and Fractal Measures (Springer, New York, 1998)

    MATH  Google Scholar 

  3. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, New York, 1990)

    MATH  Google Scholar 

  4. A. Bunde, S. Havlin (eds.), Fractals in Science (Springer, Berlin, 1995)

  5. M.F. Barnsley, Fractals Everywhere (Academic Press, Dublin, 2014)

    MATH  Google Scholar 

  6. T.G. Dewey, Fractals in Molecular Biophysics (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  7. S. Vrobel, Fractal Time: Why a Watched Kettle Never Boils, vol. 14 (World Scientific, Singapore, 2011)

    Google Scholar 

  8. K. Welch, A Fractal Topology of Time: Deepening into Timelessness (Fox Finding Press, Austin, 2020)

    Google Scholar 

  9. L. Pietronero, E. Tosatti, Fractals in Physics (Elsevier, Amsterdam, 2012)

    MATH  Google Scholar 

  10. M.F. Shlesinger, Ann. Rev. Phys. Chern. 39, 269–90 (1988)

    ADS  Google Scholar 

  11. K. Falconer, Techniques in Fractal Geometry (Wiley, New York, 1997)

    MATH  Google Scholar 

  12. M. Kesseböhmer, T. Samuel, H. Weyer, Monatshefte für Mathematik 181(3), 643–655 (2016)

    MathSciNet  Google Scholar 

  13. W.D. Withers, J. Math. Anal. Appl. 129(2), 581–595 (1988)

    MathSciNet  Google Scholar 

  14. M.T. Barlow, E.A. Perkins, Probab. Theory Relat. Fields 79(4), 543–623 (1988)

    Google Scholar 

  15. J. Kigami, Analysis on Fractals (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  16. R.S. Strichartz, Differential Equations on Fractals (Princeton University Press, Princeton, 2018)

    Google Scholar 

  17. U. Freiberg, M. Zähle, Potential Anal. 16(3), 265–277 (2002)

    MathSciNet  Google Scholar 

  18. M. Czachor, Acta Phys. Pol. B 50(4), 813 (2019)

    ADS  MathSciNet  Google Scholar 

  19. L. Nottale, J. Schneider, J. Math. Phys. 25(5), 1296–1300 (1984)

    ADS  MathSciNet  Google Scholar 

  20. M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space (Springer, New York, 2012)

    MATH  Google Scholar 

  21. A.S. Balankin, Eur. Phys. J. B (2015). https://doi.org/10.1140/epjb/e2015-60189-y

    Article  MathSciNet  Google Scholar 

  22. V.E. Tarasov, Fractional Dynamics (Springer, Berlin, 2010)

    MATH  Google Scholar 

  23. T. Sandev, Z. Tomovski, Fractional Equations and Models (Springer, Gewerbestrasse, 2019), p. 2019

    MATH  Google Scholar 

  24. V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Space: Anomalous Transport Models (World Scientific, Singapore, 2017)

    MATH  Google Scholar 

  25. M.M. Matar, M.I. Abbas, J. Alzabut, M.K.A. Kaabar, S. Etemad, S. Rezapour, Adv. Differ. Equ. 2021(1), 1–18 (2021)

    Google Scholar 

  26. A. Boutiara, M.M. Matar, M.K.A. Kaabar, F. Martínez, S. Etemad, S. Rezapour, J. Funct. Spaces (2021). https://doi.org/10.1155/2021/9993177 ((Article ID 9993177))

    Article  Google Scholar 

  27. Z. Bouazza, S. Etemad, M.S. Souid, S. Rezapour, F. Martínez, M.K.A. Kaabar, J. Funct. Spaces (2021). https://doi.org/10.1155/2021/9939147 ((Article ID 9939147))

    Article  Google Scholar 

  28. N.A.A. Fataf, A. Gowrisankar, S. Banerjee, Phys. Scr. 95(7), 075206 (2020)

    ADS  Google Scholar 

  29. P.K. Prasad, A. Gowrisankar, A. Saha, S. Banerjee, Phys. Scr. 95(6), 065603 (2020)

    ADS  Google Scholar 

  30. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2020)

    MATH  Google Scholar 

  31. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions (Dimensions and Signal Analysis) (Springer, Cham, 2021)

    MATH  Google Scholar 

  32. L.S. Schulman, Techniques and Applications of Path Integration (Dover Publications, New York, 2012)

    Google Scholar 

  33. M.L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta Functions and Fractal Drums (Springer International Publishing, New York, 2017)

    MATH  Google Scholar 

  34. A. Parvate, A.D. Gangal, Fractals 17(01), 53–148 (2009)

    MathSciNet  Google Scholar 

  35. A. Parvate, A.D. Gangal, Fractals 19(03), 271–290 (2011)

    MathSciNet  Google Scholar 

  36. A. Parvate, S. Satin, A.D. Gangal, Fractals 19(01), 15–27 (2011)

    MathSciNet  Google Scholar 

  37. A.K. Golmankhaneh, A. Fernandez, A.K. Golmankhaneh, D. Baleanu, Entropy 20(7), 504 (2018)

    ADS  Google Scholar 

  38. A.K. Golmankhaneh, K. Welch, Mod. Phys. Lett. A 36(14), 2140002 (2021)

    ADS  Google Scholar 

  39. A.K. Golmankhaneh, C. Tunç, Appl. Math. Comput. 350, 386–401 (2019)

    MathSciNet  Google Scholar 

  40. A.K. Golmankhaneh, C. Tunç, Stochastics 92(8), 1244–1260 (2019)

    Google Scholar 

  41. A.K. Golmankhaneh, D. Baleanu, J. Mod. Opt. 63(14), 1364–1369 (2016)

    ADS  Google Scholar 

  42. A.K. Golmankhaneh, A.S. Balankin, Phys. Lett. A 382(14), 960–967 (2018)

    ADS  Google Scholar 

  43. A.K. Golmankhaneh, A. Fernandez, Fractal Fract. 2(4), 30 (2018)

    Google Scholar 

  44. A.K. Golmankhaneh, C. Cattani, Fractal Fract. 3(3), 41 (2019)

    Google Scholar 

  45. A.K. Golmankhaneh, R.T. Sibatov, Mathematics 9(6), 613 (2021)

    Google Scholar 

  46. D. Medková, The Laplace Equation: Boundary Value Problems on Bounded and Unbounded Lipschitz Domains (Springer, Cham, 2018)

    MATH  Google Scholar 

  47. R. DiMartino, W. Urbina (2014). arXiv:1403.6554

  48. B.G.H. Casimir, D. Polder, Phys. Rev. 73(4), 360 (1948)

    ADS  Google Scholar 

  49. G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Phys. Rev. Lett. 88(4), 041804 (2002)

    ADS  Google Scholar 

  50. M.J. Sparnaay, Nature 180(4581), 334–335 (1957)

    ADS  Google Scholar 

  51. S.C. Lim, L.P. Teo, Casimir effect associated with fractional Klein-Gordon field. In Fractional Dynamics: Recent Advances, ed. by J. Klafter, S.C. Lim, R. Metzler (World Scientific, Singapore, 2012)

  52. R.L. Jaffe, Phys. Rev. D 72(2), 021301 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of A.K.’s father Mohammad Khalili Golmankhaneh.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili Golmankhaneh, A., Nia, S.M. Laplace equations on the fractal cubes and Casimir effect. Eur. Phys. J. Spec. Top. 230, 3895–3900 (2021). https://doi.org/10.1140/epjs/s11734-021-00317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00317-4

Navigation