Abstract
This paper mainly investigates the Riemann–Liouville fractional integral of \(\alpha \)-fractal function and fractional operator of \(\alpha \)-fractal function that maps the given continuous function to its Riemann–Liouville fractional integral. The Riemann–Liouville fractional integral is explored for \(\alpha \)-fractal function by choosing vertical scaling factor as a constant as well as a continuous function defined on the closed interval of interpolation. Further, the boundedness and linearity of the fractional operator of \(\alpha \)-fractal function are investigated. Finally, the semigroup property for the collection of fractional operators defined on \({\mathcal {C}}(I)\) are discussed.
This is a preview of subscription content, access via your institution.




References
M.F. Barnsley, Constr. Approx. 2, 303–329 (1986)
M.F. Barnsley, Fractals Everywhere (Academic Press, Dublin, 2012)
P.R. Massopust, Fractal Functions, Fractal Surfaces and Wavelets (Academic Press, Dublin, 1994)
D. Easwaramoorthy, R. Uthayakumar, Fractals 19(03), 379–386 (2011)
S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis (Springer, Cham, 2021)
S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2020)
P.K. Prasad, A. Gowrisankar, A. Saha, S. Banerjee, Phys. Scr. 95(6), 065603 (2020)
M.A. Navascués, Z. Anal. Anwend. 24(2), 401–418 (2005)
S. Verma, P. Viswanathan, Fractals 27(06), 1950090 (2019)
M.A. Navascués, Fractals 14(4), 315–325 (2006)
M.A. Navascués, Int. J. Math. Anal. 1(4), 159–174 (2007)
N. Balasubramani, M. Guru Prem Prasad, S. Natesan, Calcolo 57, 1–24 (2020)
H.Y. Wang, J.S. Yu, J. Approx. Theory 175, 1–8 (2013)
C. Serpa, J. Buescu, Chaos Solitons Fractals 75, 76–83 (2015)
M.A. Navascués, P. Viswanathan, A.K.B. Chand, M.V. Sebastián, S.K. Katiyar, Bull. Aust. Math. Soc. 92, 405–419 (2015)
D.-C. Luor, J. Math. Anal. Appl. 464, 911–923 (2018)
Md. Nasim Akhtar, M. Guru Prem Prasad, M.A. Navascués, Chaos Solitons Fractals 103, 440–449 (2017)
M.A. Navascués, Acta Appl. Math. 110, 1199–1210 (2010)
J.R. Price, M.H. Hayes, IEEE Signal Process. Lett. 5, 228–230 (1998)
F.B. Tatom, Fractals 3(1), 217–229 (1995)
H.-J. Ruan, W.-Y. Su, K. Yao, J. Approx. Theory 161, 187–197 (2009)
T.M.C. Priyanka, A. Gowrisankar, Fractals (2021). https://doi.org/10.1142/S0218348X21502157
J.-H. He, Results Phys. 10, 272–276 (2018)
Y.S. Liang, W.Y. Su, Acta Math. Sci. 32(12), 1494–1508 (2016)
Y.S. Liang, Q. Zhang, Fractals 24(2), 1650026 (2016)
A. Gowrisankar, R. Uthayakumar, Mediterr. J. Math. 13(6), 3887–3906 (2016)
A. Gowrisankar, M. Guru Prem Prasad, J. Anal. 27(2), 347–363 (2019)
M.A. Navascués, Complex Anal. Oper. Theory 4, 953–974 (2010)
M.A. Navascués, Fractals 20(2), 141–148 (2012)
N.A.A. Fataf, A. Gowrisankar, S. Banerjee, Phys. Scr. 95(7), 075206 (2020)
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, New York, 2006)
Kai Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer, New York, 2010)
Acknowledgements
The authors are grateful to Dr. M.A. Navascués, Departamento de Matemática Aplicada, Universidad de Zaragoza, Spain for spending valuable time on the constructive evaluation of the paper and sharing her suggestions towards the improvement of the paper.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Priyanka, T.M.C., Gowrisankar, A. Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator. Eur. Phys. J. Spec. Top. 230, 3789–3805 (2021). https://doi.org/10.1140/epjs/s11734-021-00315-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjs/s11734-021-00315-6