Skip to main content

Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator

Abstract

This paper mainly investigates the Riemann–Liouville fractional integral of \(\alpha \)-fractal function and fractional operator of \(\alpha \)-fractal function that maps the given continuous function to its Riemann–Liouville fractional integral. The Riemann–Liouville fractional integral is explored for \(\alpha \)-fractal function by choosing vertical scaling factor as a constant as well as a continuous function defined on the closed interval of interpolation. Further, the boundedness and linearity of the fractional operator of \(\alpha \)-fractal function are investigated. Finally, the semigroup property for the collection of fractional operators defined on \({\mathcal {C}}(I)\) are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M.F. Barnsley, Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  2. M.F. Barnsley, Fractals Everywhere (Academic Press, Dublin, 2012)

    MATH  Google Scholar 

  3. P.R. Massopust, Fractal Functions, Fractal Surfaces and Wavelets (Academic Press, Dublin, 1994)

    MATH  Google Scholar 

  4. D. Easwaramoorthy, R. Uthayakumar, Fractals 19(03), 379–386 (2011)

    Article  MathSciNet  Google Scholar 

  5. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis (Springer, Cham, 2021)

    Book  Google Scholar 

  6. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  7. P.K. Prasad, A. Gowrisankar, A. Saha, S. Banerjee, Phys. Scr. 95(6), 065603 (2020)

    Article  ADS  Google Scholar 

  8. M.A. Navascués, Z. Anal. Anwend. 24(2), 401–418 (2005)

    Article  Google Scholar 

  9. S. Verma, P. Viswanathan, Fractals 27(06), 1950090 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. M.A. Navascués, Fractals 14(4), 315–325 (2006)

    Article  MathSciNet  Google Scholar 

  11. M.A. Navascués, Int. J. Math. Anal. 1(4), 159–174 (2007)

    Google Scholar 

  12. N. Balasubramani, M. Guru Prem Prasad, S. Natesan, Calcolo 57, 1–24 (2020)

    Article  Google Scholar 

  13. H.Y. Wang, J.S. Yu, J. Approx. Theory 175, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  14. C. Serpa, J. Buescu, Chaos Solitons Fractals 75, 76–83 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.A. Navascués, P. Viswanathan, A.K.B. Chand, M.V. Sebastián, S.K. Katiyar, Bull. Aust. Math. Soc. 92, 405–419 (2015)

    Article  MathSciNet  Google Scholar 

  16. D.-C. Luor, J. Math. Anal. Appl. 464, 911–923 (2018)

    Article  MathSciNet  Google Scholar 

  17. Md. Nasim Akhtar, M. Guru Prem Prasad, M.A. Navascués, Chaos Solitons Fractals 103, 440–449 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.A. Navascués, Acta Appl. Math. 110, 1199–1210 (2010)

    Article  MathSciNet  Google Scholar 

  19. J.R. Price, M.H. Hayes, IEEE Signal Process. Lett. 5, 228–230 (1998)

    Article  ADS  Google Scholar 

  20. F.B. Tatom, Fractals 3(1), 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  21. H.-J. Ruan, W.-Y. Su, K. Yao, J. Approx. Theory 161, 187–197 (2009)

    Article  MathSciNet  Google Scholar 

  22. T.M.C. Priyanka, A. Gowrisankar, Fractals (2021). https://doi.org/10.1142/S0218348X21502157

    Article  Google Scholar 

  23. J.-H. He, Results Phys. 10, 272–276 (2018)

    Article  ADS  Google Scholar 

  24. Y.S. Liang, W.Y. Su, Acta Math. Sci. 32(12), 1494–1508 (2016)

    Google Scholar 

  25. Y.S. Liang, Q. Zhang, Fractals 24(2), 1650026 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Gowrisankar, R. Uthayakumar, Mediterr. J. Math. 13(6), 3887–3906 (2016)

    Article  MathSciNet  Google Scholar 

  27. A. Gowrisankar, M. Guru Prem Prasad, J. Anal. 27(2), 347–363 (2019)

    Article  MathSciNet  Google Scholar 

  28. M.A. Navascués, Complex Anal. Oper. Theory 4, 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  29. M.A. Navascués, Fractals 20(2), 141–148 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. N.A.A. Fataf, A. Gowrisankar, S. Banerjee, Phys. Scr. 95(7), 075206 (2020)

    Article  ADS  Google Scholar 

  31. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, New York, 2006)

    MATH  Google Scholar 

  32. Kai Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer, New York, 2010)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M.A. Navascués, Departamento de Matemática Aplicada, Universidad de Zaragoza, Spain for spending valuable time on the constructive evaluation of the paper and sharing her suggestions towards the improvement of the paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, T.M.C., Gowrisankar, A. Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator. Eur. Phys. J. Spec. Top. 230, 3789–3805 (2021). https://doi.org/10.1140/epjs/s11734-021-00315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00315-6