Skip to main content
Log in

Deep inelastic (anti)neutrino–nucleus scattering

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The present status of the field theoretical model studies of the deep inelastic scattering induced by (anti)neutrino on the nuclear targets in a wide range of Bjorken variable x and four momentum transfer square \(Q^2\) has been reviewed (Haider et al. in Phys Rev C 84:054610, 2011, Phys Rev C 85:155201, 2012, Nucl Phys A 955:58, 2016; Zaidi et al. in Phys Rev D 99:093011, 2019, Phys Rev D 101:033001, 2020; Ansari et al. in Phys Rev D 102:113007, 2020). The effect of the nonperturbative corrections such as target mass corrections and dynamical higher twist effects, perturbative evolution of the parton densities, nuclear medium modifications in the nucleon structure functions, and nuclear isoscalarity corrections on the weak nuclear structure functions have been discussed. These structure functions have been used to obtain the differential scattering cross-sections. The various nuclear medium effects such as the Fermi motion, binding energy, nucleon correlations, mesonic contributions, shadowing and antishadowing corrections relevant in the different regions of x and \(Q^2\) have been discussed. The numerical results for the structure functions and the cross-sections are compared with some of the available experimental data including the recent results from MINERvA. The predictions are made in argon nuclear target which is planned to be used as a target material in DUNE at the Fermilab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Haider, I.R. Simo, M. Sajjad Athar, M.J.V. Vacas, Phys. Rev. C 84, 054610 (2011)

    Article  ADS  Google Scholar 

  2. H. Haider, I. Ruiz Simo, M. Sajjad Athar, Phys. Rev. C 85, 055201 (2012)

    Article  ADS  Google Scholar 

  3. H. Haider, F. Zaidi, M. Sajjad Athar, S.K. Singh, I. Ruiz Simo, Nucl. Phys. A 955, 58 (2016)

    Article  ADS  Google Scholar 

  4. F. Zaidi, H. Haider, M. Sajjad Athar, S.K. Singh, I. Ruiz Simo, Phys. Rev. D 99, 093011 (2019)

    Article  ADS  Google Scholar 

  5. F. Zaidi, H. Haider, M. Sajjad Athar, S.K. Singh, I. Ruiz Simo, Phys. Rev. D 101, 033001 (2020)

    Article  ADS  Google Scholar 

  6. V. Ansari, M. Sajjad Athar, H. Haider, S.K. Singh, F. Zaidi, Phys. Rev. D 102, 113007 (2020)

    Article  ADS  Google Scholar 

  7. M. Sajjad Athar, J.G. Morfin, J. Phys. G 48, 034001 (2021)

    Article  ADS  Google Scholar 

  8. C.G. Callan Jr., D.J. Gross, Phys. Rev. Lett. 22, 156 (1969)

    Article  ADS  Google Scholar 

  9. C.H. Albright, C. Jarlskog, Nucl. Phys. B 84, 467 (1975)

    Article  ADS  Google Scholar 

  10. J. Mousseau et al., [MINERvA Collaboration]. Phys. Rev. D 93(7), 071101 (2016)

    Article  ADS  Google Scholar 

  11. J.P. Berge et al., Z. Phys. C 49, 187 (1991)

    Article  Google Scholar 

  12. E. Oltman et al., Z. Phys. C 53, 51 (1992)

    Article  ADS  Google Scholar 

  13. M. Tzanov et al., NuTeV Collaboration. Phys. Rev. D 74, 012008 (2006)

    Article  ADS  Google Scholar 

  14. K. Kovarik et al., Phys. Rev. D 93, 085037 (2016)

    Article  ADS  Google Scholar 

  15. M. Sajjad Athar, I. Ruiz Simo, M.J. Vicente Vacas, Nucl. Phys. A 857, 29 (2011)

    Article  ADS  Google Scholar 

  16. S.A. Kulagin, R. Petti, Phys. Rev. D 76, 094023 (2007)

    Article  ADS  Google Scholar 

  17. S.A. Kulagin, R. Petti, Nucl. Phys. A 765, 126 (2006)

    Article  ADS  Google Scholar 

  18. E. Marco et al., Nucl. Phys. A 611, 484 (1996)

    Article  ADS  Google Scholar 

  19. P. Fernandez de Cordoba, E. Oset, Phys. Rev. C 46, 1697 (1992)

    Article  ADS  Google Scholar 

  20. B. Abi et al. [DUNE Collaboration], arXiv:1807.10327 [physics.ins-det]

  21. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  22. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  23. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  24. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975). ([Yad. Fiz. 20, 181 (1974)] )

    Google Scholar 

  25. L.A. Harland-Lang et al., Eur. Phys. J. C 75, 204 (2015)

    Article  ADS  Google Scholar 

  26. J.A.M. Vermaseren et al., Nucl. Phys. B 724, 3 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005)

    Article  ADS  Google Scholar 

  28. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 813, 220 (2009)

    Article  ADS  Google Scholar 

  29. M. Dasgupta, B.R. Webber, Phys. Lett. B 382, 273 (1996)

    Article  ADS  Google Scholar 

  30. I. Schienbein et al., J. Phys. G 35, 053101 (2008)

    Article  Google Scholar 

  31. H. Haider, F. Zaidi, M. Sajjad Athar, S.K. Singh, I. Ruiz Simo, Nucl. Phys. A 943, 58 (2015)

    Article  ADS  Google Scholar 

  32. H. DeVries, C.W. DeJager, C. DeVries, Atomic Data Nucl. Data Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  33. H. Haider, M. Sajjad Athar, S.K. Singh, I.R. Simo, J. Phys. G 44, 045111 (2017)

    Article  ADS  Google Scholar 

  34. H. Haider, I. Ruiz Simó, M. Sajjad Athar, M. Vicente Vacas, D.A.E. Symp, Nucl. Phys. 56, 868 (2011)

    Google Scholar 

  35. M. Gluck et al., Z. Phys. C 53, 651 (1992)

    Article  ADS  Google Scholar 

  36. S. Kretzer, M. Reno, Phys. Rev. D 69, 034002 (2004)

    Article  ADS  Google Scholar 

  37. S. Kretzer, M.H. Reno, Phys. Rev. D 66, 113007 (2002)

    Article  ADS  Google Scholar 

  38. Y.S. Jeong, M.H. Reno, Phys. Rev. D 82, 033010 (2010)

    Article  ADS  Google Scholar 

  39. K. Hagiwara, K. Mawatari, H. Yokoya, Nucl. Phys. B 668, 364 (2003)

    Article  ADS  Google Scholar 

  40. J. Conrad, A. de Gouvea, S. Shalgar, J. Spitz, Phys. Rev. D 82, 093012 (2010)

    Article  ADS  Google Scholar 

  41. E.A. Paschos, J.Y. Yu, Phys. Rev. D 65, 033002 (2002)

    Article  ADS  Google Scholar 

  42. A. Gazizov et al., EPJ Web Conf. 116, 08003 (2016)

    Article  Google Scholar 

  43. Z. Li et al., Super-Kamiokande Collaboration. Phys. Rev. D 98, 052006 (2018)

    Article  ADS  Google Scholar 

  44. M. Anelli et al. [SHiP Collaboration], arXiv:1504.04956 [physics.ins-det]

  45. S. Gardiner, private communication

  46. C. Juszczak, J.A. Nowak, J.T. Sobczyk, Nucl. Phys. B, Proc. Suppl. 159, 211 (2006)

  47. V. Mamyan, arXiv:1202.1457 [nucl-ex]

  48. P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  49. J. G. Morfin, private communication

Download references

Acknowledgements

F. Zaidi is thankful to the Council of Scientific & Industrial Research (CSIR), India, for providing the research associate fellowship with award letter no. 09/112(0622)2K19 EMR-I. I. Ruiz Simo acknowledges support from Spanish Ministry of Science and ERDF under contract FIS2017-85053-C2-1P, and from Junta de Andalucia through Grant no. FQM-225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, V., Athar, M.S., Haider, H. et al. Deep inelastic (anti)neutrino–nucleus scattering. Eur. Phys. J. Spec. Top. 230, 4433–4448 (2021). https://doi.org/10.1140/epjs/s11734-021-00277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00277-9

Navigation