Skip to main content
Log in

Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The operation of memristive, meminductive and memcapacitive circuit components depend on their history of devices, i.e. they are memory dependent. This paper proposes new fractional-order (FO) models of four such circuits since FO derivative is calculated using the past history of time and helps in understanding the memory-dependent dynamics of these memory devices better as compared to the integral derivative. Interestingly, these fractional-order memristive, meminductive and memcapacitive systems (FOMMMSs) display a myriad of dynamics such as ranging from coexisting to hidden attractors, chaotic to hyperchaotic attractors, periodic orbits to stable foci, bursting oscillations transitioning from chaos to periodic states and vice versa, offset boosting phenomenon, and a varied nature of infinite equilibria. The proposed fractional-order systems can have a number of applications such as in oscillator circuits, and secure communication due to the increased randomness of hidden multistability. The theoretical analyses of existence of multistability and hidden attractors in the proposed FOMMMSs comply with that of the numerical simulation and circuit implementation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. G.D. Zhang, J.H. Hu, Y. Shen, Nonlinear Dyn. 81, 1167 (2015)

    Article  Google Scholar 

  4. Y. Song, F. Yuan, Y. Li, Entropy 21, 678 (2019). https://doi.org/10.3390/e21070678

    Article  ADS  Google Scholar 

  5. M. Di Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 97, 1717 (2009)

    Article  Google Scholar 

  6. T.F. Fonzin, K. Srinivasan, J. Kengne, F.B. Pelap, Int. J. Electron. Commun. (AEÜ) 90, 110 (2018)

    Article  Google Scholar 

  7. V.T. Pham, S. Jafari, X. Wang, J. Ma, Int. J. Bifurc. Chaos 26, 1650069 (2016)

    Article  Google Scholar 

  8. D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional Dynamics and Control (Springer, New York, 2012). https://doi.org/10.1007/978-1-4614-0457-6

    Book  Google Scholar 

  9. Ma, X., Cao, S.: Shock and vibration. Article ID 5207910 (2018). https://doi.org/10.1155/2018/5207910

  10. S. Jafari, J.C. Sprott, F. Nazarimehr, Eur. Phys. J. Spec. Top. 224, 1469 (2015)

    Article  Google Scholar 

  11. Borah, M., Roy, B.K.: Switching synchronisation control between integer-order and fractional-order dynamics of a chaotic system. In: IEEE Indian Control Conference, IIT Guwahati, India, 4–6th Jan, pp. 456–461 (2017)

  12. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  13. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2907444

  14. Borah, M.: J. Comput. Nonlinear Dyn. 13 (2018). https://doi.org/10.1115/1.4039841

  15. R.B. Leipnik, T.A. Newton, Phys. Lett. A 86, 63 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Borah, B.K. Roy, Eur. Phys. J. Spec. Top. 226, 3747 (2017)

    Article  Google Scholar 

  17. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Phys. Lett. A 375, 2230 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  18. Wang, G., Shi, C., Wang, X., Yuan, F.: Math. Probl. Eng. 2017, 504969 (2017). https://doi.org/10.1155/2017/6504969

  19. H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Xu, G. Wang, H.H. Iu, S. Yu, F. Yuan, Nonlinear Dyn. 96, 765 (2019)

    Article  Google Scholar 

  21. Mezatio, B.A., Motchongom, M.T., Tekam, B.W., Kengne, R., Tchitnga, R., Fomethe, A.: Chaos Solitons Fractals 120, 100 (2019)

  22. C. Li, J.C. Sprott, Optik 127, 10389 (2016)

    Article  ADS  Google Scholar 

  23. J.C. Sprott, Int. J. Bifurc. Chaos 21, 2391 (2011)

    Article  Google Scholar 

  24. Borah, M., Roy, B.K.: Chaos Solitons Fractals 131 (2020). https://doi.org/10.1016/j.chaos.2019.109539

  25. M. Borah, B.K. Roy, Int. J. Control 91, 2615 (2018)

    Article  Google Scholar 

  26. M.F. Danca, N. Kuznetsov, Int. J. Bifurc. Chaos 28, 1850067 (2018)

  27. Munoz-Pacheco, J.M., Zambrano-Serrano, E., Volos, Ch., Tacha, O.I., Stouboulos, I.N., Pham, V.-T.: Chaos Solitons Fractals 113, 69 (2018)

  28. Huang, W., Ge, Y., Min, F., Wang, E.: Circuit implementations and bifurcations of a novel fractional-order chaotic system. In: Sixth International Conference on Intelligent Control and Information Processing (ICICIP), Wuhan, China, Nov. 26–28, pp. 98–104 (2015)

  29. Yuan, F., Li, Y.: Chaos Interdiscip. J. Nonlinear Sci. 29, 101101 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manashita Borah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, M., Roy, B.K. Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena. Eur. Phys. J. Spec. Top. 230, 1773–1783 (2021). https://doi.org/10.1140/epjs/s11734-021-00179-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00179-w

Navigation