L. Maiani, M. Testa, Final state interactions from Euclidean correlation functions. Phys. Lett. B 245, 585 (1990)
ADS
Google Scholar
M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys. 104, 177 (1986)
ADS
MathSciNet
MATH
Google Scholar
M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys. 105, 153 (1986)
ADS
MathSciNet
MATH
Google Scholar
M. Lüscher, Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B 354, 531 (1991)
ADS
MathSciNet
Google Scholar
M. Lüscher, P. Weisz, On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59 (1985)
ADS
MathSciNet
MATH
Google Scholar
D. Guo, A. Alexandru, R. Molina, M. Döring, Rho resonance parameters from lattice QCD. Phys. Rev. D 94, 034501 (2016). arXiv:1605.03993
ADS
Google Scholar
M. Mai, C. Culver, A. Alexandru, M. Döring, F.X. Lee, Cross-channel study of pion scattering from lattice QCD. Phys. Rev. D 100, 114514 (2019). arXiv:1908.01847
ADS
Google Scholar
K. Rummukainen, S.A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B 450, 397 (1995). arXiv:hep-lat/9503028
ADS
Google Scholar
X. Li, C. Liu, Two particle states in an asymmetric box. Phys. Lett. B 587, 100 (2004). arXiv:hep-lat/0311035
ADS
Google Scholar
X. Feng, X. Li, C. Liu, Two particle states in an asymmetric box and the elastic scattering phases. Phys. Rev. D 70, 014505 (2004). arXiv:hep-lat/0404001
ADS
Google Scholar
C.H. Kim, C.T. Sachrajda, S.R. Sharpe, Finite-volume effects for two-hadron states in moving frames. Nucl. Phys. B 727, 218 (2005). arXiv:hep-lat/0507006
ADS
Google Scholar
M. Lage, U.-G. Meißner, A. Rusetsky, A method to measure the antikaon-nucleon scattering length in lattice QCD. Phys. Lett. B 681, 439 (2009). arXiv:0905.0069
ADS
Google Scholar
Z. Fu, Rummukainen–Gottlieb’s formula on two-particle system with different mass. Phys. Rev. D 85, 014506 (2012). arXiv:1110.0319
Z. Davoudi, M.J. Savage, Improving the volume dependence of two-body binding energies calculated with lattice QCD. Phys. Rev. D 84, 114502 (2011). arXiv:1108.5371
ADS
Google Scholar
M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Scalar mesons moving in a finite volume and the role of partial wave mixing. Eur. Phys. J. A 48, 114 (2012). arXiv:1205.4838
ADS
Google Scholar
L. Leskovec, S. Prelovsek, Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD. Phys. Rev. D 85, 114507 (2012). arXiv:1202.2145
ADS
Google Scholar
R.A. Briceno, Z. Davoudi, Moving multichannel systems in a finite volume with application to proton–proton fusion. Phys. Rev. D 88, 094507 (2013). arXiv:1204.1110
ADS
Google Scholar
M. Gockeler, R. Horsley, M. Lage, U.G. Meißner, P.E.L. Rakow, A. Rusetsky et al., Scattering phases for meson and baryon resonances on general moving-frame lattices. Phys. Rev. D 86, 094513 (2012). arXiv:1206.4141
ADS
Google Scholar
P. Guo, J. Dudek, R. Edwards, A.P. Szczepaniak, Coupled-channel scattering on a torus. Phys. Rev. D 88, 014501 (2013). arXiv:1211.0929
ADS
Google Scholar
N. Li, C. Liu, Generalized Lüscher formula in multichannel baryon-meson scattering. Phys. Rev. D 87, 014502 (2013). arXiv:1209.2201
ADS
Google Scholar
R.A. Briceño, Z. Davoudi, T.C. Luu, M.J. Savage, Two-baryon systems with twisted boundary conditions. Phys. Rev. D 89, 074509 (2014). arXiv:1311.7686
ADS
Google Scholar
F.X. Lee, A. Alexandru, Scattering phase-shift formulas for mesons and baryons in elongated boxes. Phys. Rev. D 96, 054508 (2017). arXiv:1706.00262
ADS
Google Scholar
C. Morningstar, J. Bulava, B. Singha, R. Brett, J. Fallica, A. Hanlon et al., Estimating the two-particle \(K\)-matrix for multiple partial waves and decay channels from finite-volume energies. Nucl. Phys. B 924, 477 (2017). arXiv:1707.05817
ADS
MATH
Google Scholar
Y. Li, J.-J. Wu, C.D. Abell, D.B. Leinweber, A.W. Thomas, Partial wave mixing in Hamiltonian effective field theory. Phys. Rev. D 101, 114501 (2020). arXiv:1910.04973
ADS
MathSciNet
Google Scholar
S.R. Sharpe, R. Gupta, G.W. Kilcup, Lattice calculation of \(I = 2\) pion scattering length. Nucl. Phys. B 383, 309 (1992)
ADS
Google Scholar
Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Lattice QCD calculation of full pion scattering lengths. Phys. Rev. Lett. 71, 2387 (1993)
ADS
Google Scholar
R. Gupta, A. Patel, S.R. Sharpe, \(I = 2\) pion scattering amplitude with Wilson fermions. Phys. Rev. D 48, 388 (1993). arXiv:hep-lat/9301016
ADS
Google Scholar
Shape CP-PACS Collaboration, \(I = 2\) pi pi scattering phase shift with two flavors of \(O(a)\) improved dynamical quarks. Phys. Rev. D 70, 074513 (2004). arXiv:hep-lat/0402025
Shape CP-PACS Collaboration, \(I=2\) pion scattering length from two-pion wave functions. Phys. Rev. D 71, 094504 (2005). arXiv:hep-lat/0503025
Shape NPLQCD Collaboration, \(I = 2\) pi–pi scattering from fully-dynamical mixed-action lattice QCD. Phys. Rev. D 73, 054503 (2006). arXiv:hep-lat/0506013
S.R. Beane, T.C. Luu, K. Orginos, A. Parreño, M.J. Savage, A. Torok et al., Precise determination of the \(I=2\) pi pi scattering length from mixed-action lattice QCD. Phys. Rev. D 77, 014505 (2008). arXiv:0706.3026
ADS
Google Scholar
X. Feng, K. Jansen, D.B. Renner, The \(\pi ^+ \pi ^+\) scattering length from maximally twisted mass lattice QCD. Phys. Lett. B 684, 268 (2010). arXiv:0909.3255
ADS
Google Scholar
T. Yagi, S. Hashimoto, O. Morimatsu, M. Ohtani, \(I=2\)\(\pi \)–\(\pi \) scattering length with dynamical overlap fermion. arXiv:1108.2970
Z. Fu, Lattice QCD study of the s-wave \(\pi \pi \) scattering lengths in the \(I=0\) and 2 channels. Phys. Rev. D 87, 074501 (2013). arXiv:1303.0517
ADS
Google Scholar
Shape PACS-CS Collaboration, Scattering lengths for two pseudoscalar meson systems. Phys. Rev. D 89, 054502 (2014). arXiv:1311.7226
HAL QCD Collaboration, \(I=2\)\(\pi \pi \) scattering phase shift from the HAL QCD method with the LapH smearing. PTEP 2018, 043B04 (2018). arXiv: 1711.01883
J.J. Dudek, R.G. Edwards, C.E. Thomas, S and D-wave phase shifts in isospin-2 pi pi scattering from lattice QCD. Phys. Rev. D 86, 034031 (2012). arXiv:1203.6041
ADS
Google Scholar
J. Bulava, B. Fahy, B. Hörz, K.J. Juge, C. Morningstar, C.H. Wong, \(I=1\) and \(I=2\)\(\pi -\pi \) scattering phase shifts from \(N_{\rm f} = 2+1\) lattice QCD. Nucl. Phys. B 910, 842 (2016). arXiv:1604.05593
ADS
MATH
Google Scholar
Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, T. Miyamoto, K. Sasaki, \(I=2\)\(\pi \pi \) potential in the HAL QCD method with all-to-all propagators. arXiv:1904.09549
Shape ETM Collaboration, Hadron–hadron interactions from \(N_{f}\) = 2 + 1 + 1 lattice QCD: isospin-2 \(\pi \pi \) scattering length. JHEP 09, 109 (2015). arXiv:1506.00408
C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, F. Pittler et al., Meson–meson scattering lengths at maximum isospin from lattice QCD. in 9th International Workshop on Chiral Dynamics (CD18) Durham, NC, USA, September 17–21, 2018, 2019. arXiv:1904.00191
B. Hörz, A. Hanlon, Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD. Phys. Rev. Lett. 123, 142002 (2019). arXiv:1905.04277
ADS
Google Scholar
Shape CP-PACS Collaboration, Lattice QCD calculation of the rho meson decay width. Phys. Rev. D 76, 094506 (2007). arXiv:0708.3705
X. Feng, K. Jansen, D.B. Renner, Resonance parameters of the rho-meson from lattice QCD. Phys. Rev. D 83, 094505 (2011). arXiv:1011.5288
ADS
Google Scholar
QCDSF Collaboration, Extracting the rho resonance from lattice QCD simulations at small quark masses. PoS LATTICE2008, 136 (2008). arXiv:0810.5337
C.B. Lang, D. Mohler, S. Prelovsek, M. Vidmar, Coupled channel analysis of the rho meson decay in lattice QCD. Phys. Rev. D 84, 054503 (2011). arXiv:1105.5636
ADS
Google Scholar
Shape RQCD Collaboration, \(\rho \) and \(K^*\) resonances on the lattice at nearly physical quark masses and \(N_f=2\). Phys. Rev. D 93, 054509 (2016). arXiv:1512.08678
C. Pelissier, A. Alexandru, Resonance parameters of the rho-meson from asymmetrical lattices. Phys. Rev. D 87, 014503 (2013). arXiv:1211.0092
ADS
Google Scholar
Shape CS Collaboration, \(\rho \) meson decay in 2+1 flavor lattice QCD. Phys. Rev. D 84, 094505 (2011). arXiv:1106.5365
Shape Hadron Spectrum Collaboration, Energy dependence of the \(\rho \) resonance in \(\pi \pi \) elastic scattering from lattice QCD. Phys. Rev. D 87, 034505 (2013). arXiv:1212.0830
X. Feng, S. Aoki, S. Hashimoto, T. Kaneko, Timelike pion form factor in lattice QCD. Phys. Rev. D 91, 054504 (2015). arXiv:1412.6319
ADS
Google Scholar
Budapest-Marseille-Wuppertal Collaboration, Lattice study of \(\pi \pi \) scattering using \(N_f=2+1\) Wilson improved quarks with masses down to their physical values. PoS LATTICE2014, 079 (2015). arXiv:1410.8447
D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards, C.E. Thomas, Coupled \(\pi \pi, K\bar{K}\) scattering in \(P\)-wave and the \(\rho \) resonance from lattice QCD. Phys. Rev. D 92, 094502 (2015). arXiv:1507.02599
ADS
Google Scholar
C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies et al., \(P\)-wave \(\pi \pi \) scattering and the \(\rho \) resonance from lattice QCD. Phys. Rev. D 96, 034525 (2017). arXiv:1704.05439
ADS
Google Scholar
C. Andersen, J. Bulava, B. Hörz, C. Morningstar, The \(I=1\) pion-pion scattering amplitude and timelike pion form factor from \(N_{\rm f} = 2+1\) lattice QCD. Nucl. Phys. B 939, 145 (2019). arXiv:1808.05007
ADS
MATH
Google Scholar
Z. Fu, L. Wang, Studying the \(\rho \) resonance parameters with staggered fermions. Phys. Rev. D 94, 034505 (2016). arXiv:1608.07478
ADS
Google Scholar
M. Werner et al., Hadron–hadron interactions from \(N_f=2+1+1\) lattice QCD: the \(\rho \)-resonance. arXiv:1907.01237
R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Isoscalar \(\pi \pi \) scattering and the meson resonance from QCD. Phys. Rev. Lett. 118, 022002 (2017). arXiv:1607.05900
ADS
Google Scholar
L. Liu et al., Isospin-0 \(\pi \pi \) s-wave scattering length from twisted mass lattice QCD. Phys. Rev. D 96, 054516 (2017). arXiv:1612.02061
ADS
Google Scholar
R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Isoscalar \(\pi \pi, K\overline{K}, \eta \eta \) scattering and the \( , f_0, f_2\) mesons from QCD. Phys. Rev. D 97, 054513 (2018). arXiv:1708.06667
ADS
Google Scholar
Z. Fu, X. Chen, \(I=0\)\(\pi \pi \)\(s\)-wave scattering length from lattice QCD. Phys. Rev. D 98, 014514 (2018). arXiv:1712.02219
ADS
Google Scholar
D. Guo, A. Alexandru, R. Molina, M. Mai, M. Döring, Extraction of isoscalar \(\pi \pi \) phase-shifts from lattice QCD. Phys. Rev. D 98, 014507 (2018). arXiv:1803.02897
ADS
Google Scholar
S.R. Beane, P.F. Bedaque, T.C. Luu, K. Orginos, E. Pallante, A. Parreño et al., \(\pi K\) scattering in full QCD with domain-wall valence quarks. Phys. Rev. D 74, 114503 (2006). arXiv:hep-lat/0607036
ADS
Google Scholar
C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, K pi scattering for isospin 1/2 and 3/2 in lattice QCD. Phys. Rev. D 86, 054508 (2012). arXiv:1207.3204
ADS
Google Scholar
Z. Fu, The preliminary lattice QCD calculation of \(\kappa \) meson decay width. JHEP 01, 017 (2012). arXiv:1110.5975
S. Prelovsek, L. Leskovec, C.B. Lang, D. Mohler, K \(\pi \) scattering and the K* decay width from lattice QCD. Phys. Rev. D 88, 054508 (2013). arXiv:1307.0736
ADS
Google Scholar
T. Janowski, P.A. Boyle, A. Jüttner, C. Sachrajda, K-pi scattering lengths at physical kinematics. PoS LATTICE2014, 080 (2014)
Google Scholar
C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, C. Urbach et al., Hadron–hadron interactions from \(N_f=2+1+1\) lattice QCD: isospin-1 \(KK\) scattering length. Phys. Rev. D 96, 034510 (2017). arXiv:1703.04737
ADS
Google Scholar
R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, C. Morningstar, Determination of \(s\)- and \(p\)-wave \(I=1/2\)\(K\pi \) scattering amplitudes in \(N_{\rm f}=2+1\) lattice QCD. Nucl. Phys. B 932, 29 (2018). arXiv:1802.03100
ADS
MATH
Google Scholar
Shape ETM Collaboration, Hadron–hadron interactions from \(N_f=2+1+1\) lattice QCD: \(I=3/2\)\(\pi K\) scattering length. Phys. Rev. D 98, 114511 (2018). arXiv:1809.08886
D.J. Wilson, R.A. Briceño, J.J. Dudek, R.G. Edwards, C.E. Thomas, The quark-mass dependence of elastic \(\pi K\) scattering from QCD. Phys. Rev. Lett. 123, 042002 (2019). arXiv:1904.03188
ADS
Google Scholar
A.J. Woss, C.E. Thomas, J.J. Dudek, R.G. Edwards, D.J. Wilson, \(b_1\) resonance in coupled \(\pi \omega \), \(\pi \phi \) scattering from lattice QCD. Phys. Rev. D 100, 054506 (2019). arXiv:1904.04136
ADS
Google Scholar
A. Woss, C.E. Thomas, J.J. Dudek, R.G. Edwards, D.J. Wilson, Dynamically-coupled partial-waves in \(\rho \pi \) isospin-2 scattering from lattice QCD. arXiv:1802.05580
C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, Axial resonances a\(_{1}\)(1260), b\(_{1}\)(1235) and their decays from the lattice. JHEP 04, 162 (2014). arXiv:1401.2088
ADS
Google Scholar
L. Gayer, N. Lang, S.M. Ryan, D. Tims, C.E. Thomas, D.J. Wilson, Isospin-1/2 \(D\pi \) scattering and the lightest \(D_0^\ast \) resonance from lattice QCD. arXiv:2102.04973
G.K.C. Cheung, C.E. Thomas, D.J. Wilson, G. Moir, M. Peardon, S.M. Ryan, \(DK\)\(I=0,\)\(D\bar{K}\,I=0,1\) scattering and the \(D_{s0}^\ast (2317)\) from lattice QCD. arXiv:2008.06432
S. Prelovsek, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, Charmonium-like resonances with \(J^{PC}=0^{++},2^{++}\) in coupled \(D\bar{D}\), \(D_s\bar{D}_s\) scattering on the lattice. arXiv:2011.02542
S. Piemonte, S. Collins, D. Mohler, M. Padmanath, S. Prelovsek, Charmonium resonances with \(J^{PC}=1^{-}\) and \(3^{-}\) from \(\bar{D}D\) scattering on the lattice. Phys. Rev. D 100, 074505 (2019). arXiv:1905.03506
ADS
Google Scholar
G.S. Bali, S. Collins, A. Cox, A. Schäfer, Masses and decay constants of the \(D_{s0}^*(2317)\) and \(D_{s1}(2460)\) from \(N_f=2\) lattice QCD close to the physical point. Phys. Rev. D 96, 074501 (2017). arXiv:1706.01247
ADS
Google Scholar
C.B. Lang, D. Mohler, S. Prelovsek, \(B_s\pi ^+\) scattering and search for X(5568) with lattice QCD. Phys. Rev. D 94, 074509 (2016). arXiv:1607.03185
ADS
Google Scholar
M. Albaladejo, P. Fernandez-Soler, F.-K. Guo, J. Nieves, Two-pole structure of the \(D^\ast _0(2400)\). Phys. Lett. B 767, 465 (2017). arXiv:1610.06727
ADS
Google Scholar
C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, Vector and scalar charmonium resonances with lattice QCD. JHEP 09, 089 (2015). arXiv: 1503.05363
ADS
Google Scholar
C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, R.M. Woloshyn, Ds mesons with DK and D*K scattering near threshold. Phys. Rev. D 90, 034510 (2014). arXiv:1403.8103
ADS
Google Scholar
A. Martínez Torres, E. Oset, S. Prelovsek, A. Ramos, Reanalysis of lattice QCD spectra leading to the \(D_{s0}^*(2317)\) and \(D_{s1}^*(2460)\). JHEP 05, 153 (2015). arXiv:1412.1706
ADS
Google Scholar
D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek, R.M. Woloshyn, \(D_{s0}^*(2317)\) meson and \(D\)-meson–kaon scattering from lattice QCD. Phys. Rev. Lett. 111, 222001 (2013). arXiv:1308.3175
ADS
Google Scholar
Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Towards a precise determination of the scattering amplitudes of the charmed and light-flavor pseudoscalar mesons. Eur. Phys. J. C 79, 13 (2019). arXiv:1811.05585
ADS
Google Scholar
C. Alexandrou, J.W. Negele, M. Petschlies, A.V. Pochinsky, S.N. Syritsyn, Study of decuplet baryon resonances from lattice QCD. Phys. Rev. D 93, 114515 (2016). arXiv:1507.02724
ADS
Google Scholar
C. Alexandrou, J. Negele, M. Petschlies, A. Strelchenko, A. Tsapalis, Determination of \(\Delta \) resonance parameters from lattice QCD. Phys. Rev. D 88, 031501 (2013). arXiv:1305.6081
ADS
Google Scholar
Shape BGR Collaboration, QCD with two light dynamical chirally improved quarks: baryons. Phys. Rev. D 87, 074504 (2013). arXiv:1301.4318
J.J. Dudek, R.G. Edwards, Hybrid baryons in QCD. Phys. Rev. D 85, 054016 (2012). arXiv:1201.2349
ADS
Google Scholar
Shape Hadron Spectrum Collaboration, Flavor structure of the excited baryon spectra from lattice QCD. Phys. Rev. D 87, 054506 (2013). arXiv:1212.5236
R.A. Briceño, H.-W. Lin, D.R. Bolton, Charmed-baryon spectroscopy from lattice QCD with \(N_f\) = 2+1+1 flavors. Phys. Rev. D 86, 094504 (2012). arXiv:1207.3536
ADS
Google Scholar
R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). arXiv:1104.5152
ADS
Google Scholar
J. Bulava, R. Edwards, E. Engelson, B. Joo, H.-W. Lin, C. Morningstar et al., Nucleon, \(\Delta \) and \(\Omega \) excited states in \(N_f=2+1\) lattice QCD. Phys. Rev. D 82, 014507 (2010). arXiv:1004.5072
ADS
Google Scholar
S. Durr et al., Ab-initio determination of light hadron masses. Science 322, 1224 (2008). arXiv:0906.3599
ADS
Google Scholar
T. Burch, C. Gattringer, L.Y. Glozman, C. Hagen, D. Hierl, C. Lang et al., Excited hadrons on the lattice: baryons. Phys. Rev. D 74, 014504 (2006). arXiv:hep-lat/0604019
ADS
Google Scholar
Shape European Twisted Mass Collaboration, Light baryon masses with dynamical twisted mass fermions. Phys. Rev. D 78, 014509 (2008). arXiv:0803.3190
B.J. Menadue, W. Kamleh, D.B. Leinweber, M. Mahbub, Isolating the \(\Lambda (1405)\) in lattice QCD. Phys. Rev. Lett. 108, 112001 (2012). arXiv:1109.6716
ADS
Google Scholar
W. Melnitchouk, S.O. Bilson-Thompson, F. Bonnet, J. Hedditch, F. Lee, D. Leinweber et al., Excited baryons in lattice QCD. Phys. Rev. D 67, 114506 (2003). arXiv:hep-lat/0202022
ADS
Google Scholar
G. Silvi et al., P-wave nucleon–pion scattering amplitude in the \(\Delta (1232)\) channel from lattice QCD. arXiv:2101.00689
F.M. Stokes, W. Kamleh, D.B. Leinweber, Elastic form factors of nucleon excitations in lattice QCD. Phys. Rev. D 102, 014507 (2020). arXiv:1907.00177
ADS
Google Scholar
C.W. Andersen, J. Bulava, B. Hörz, C. Morningstar, Elastic \(I=3/2 p\)-wave nucleon-pion scattering amplitude and the \(\Delta \)(1232) resonance from N\(_f\)=2+1 lattice QCD. Phys. Rev. D 97, 014506 (2018). arXiv:1710.01557
ADS
Google Scholar
C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Pion–nucleon scattering in the Roper channel from lattice QCD. Phys. Rev. D 95, 014510 (2017). arXiv:1610.01422
ADS
Google Scholar
C. Lang, V. Verduci, Scattering in the \(\pi \)N negative parity channel in lattice QCD. Phys. Rev. D 87, 054502 (2013). arXiv:1212.5055
ADS
Google Scholar
M. Döring, M. Mai, U.-G. Meißner, Finite volume effects and quark mass dependence of the \(N\)(1535) and \(N\)(1650). Phys. Lett. B 722, 185 (2013). arXiv:1302.4065
ADS
Google Scholar
J.M.M. Hall, A.C.P. Hsu, D.B. Leinweber, A.W. Thomas, R.D. Young, Finite-volume matrix Hamiltonian model for a \(\Delta \rightarrow N\pi \) system. Phys. Rev. D 87, 094510 (2013). arXiv:1303.4157
ADS
Google Scholar
J.-J. Wu, H. Kamano, T.-S.H. Lee, D.B. Leinweber, A.W. Thomas, Nucleon resonance structure in the finite volume of lattice QCD. Phys. Rev. D 95, 114507 (2017). arXiv:1611.05970
ADS
Google Scholar
Z.-W. Liu, W. Kamleh, D.B. Leinweber, F.M. Stokes, A.W. Thomas, J.-J. Wu, Hamiltonian effective field theory study of the \(\mathbf{N^*(1535)}\) resonance in lattice QCD. Phys. Rev. Lett. 116, 082004 (2016). arXiv:1512.00140
ADS
Google Scholar
Z.-W. Liu, J.M.M. Hall, D.B. Leinweber, A.W. Thomas, J.-J. Wu, Structure of the \(\mathbf{\Lambda (1405)}\) from Hamiltonian effective field theory. Phys. Rev. D 95, 014506 (2017). arXiv:1607.05856
ADS
Google Scholar
C. Liu, X. Feng, S. He, Two particle states in a box and the S-matrix in multi-channel scattering. Int. J. Mod. Phys. A 21, 847 (2006). arXiv:hep-lat/0508022
ADS
MATH
Google Scholar
V. Bernard, M. Lage, U.G. Meißner, A. Rusetsky, Scalar mesons in a finite volume. JHEP 01, 019 (2011). arXiv: 1010.6018
ADS
MATH
Google Scholar
M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Unitarized chiral perturbation theory in a finite volume: scalar meson sector. Eur. Phys. J. A 47, 139 (2011). arXiv:1107.3988
ADS
Google Scholar
M. Döring, J. Haidenbauer, U.-G. Meißner, A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice. Eur. Phys. J. A 47, 163 (2011). arXiv:1108.0676
ADS
Google Scholar
M. Döring, U.-G. Meißner, Finite volume effects in pion-kaon scattering and reconstruction of the \(\kappa \)(800) resonance. JHEP 01, 009 (2012). arXiv:1111.0616
ADS
MATH
Google Scholar
R.A. Briceño, Two-particle multichannel systems in a finite volume with arbitrary spin. Phys. Rev. D 89, 074507 (2014). arXiv:1401.3312
ADS
Google Scholar
C.T. Johnson, J.J. Dudek, Excited \(J^{-}\) meson resonances at the SU(3) flavor point from lattice QCD. arXiv:2012.00518
G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas, D.J. Wilson, Coupled-channel \(D\pi \), \(D\eta \) and \(D_{s}\bar{K}\) scattering from lattice QCD. JHEP 10, 011 (2016). arXiv:1607.07093
ADS
Google Scholar
Shape Hadron Spectrum Collaboration, An \(a_0\) resonance in strongly coupled \(\pi \eta \), \(K\overline{K}\) scattering from lattice QCD. Phys. Rev. D 93, 094506 (2016). arXiv:1602.05122
D.J. Wilson, J.J. Dudek, R.G. Edwards, C.E. Thomas, Resonances in coupled \(\pi K, \eta K\) scattering from lattice QCD. Phys. Rev. D 91, 054008 (2015). arXiv:1411.2004
ADS
Google Scholar
Shape Hadron Spectrum Collaboration, Resonances in coupled \(\pi K -\eta K\) scattering from quantum chromodynamics. Phys. Rev. Lett. 113, 182001 (2014). arXiv:1406.4158
A.J. Woss, J.J. Dudek, R.G. Edwards, C.E. Thomas, D.J. Wilson, Decays of an exotic \(1^{-+}\) hybrid meson resonance in QCD. arXiv:2009.10034
R.A. Briceno, J.J. Dudek, R.D. Young, Scattering processes and resonances from lattice QCD. Rev. Mod. Phys. 90, 025001 (2018). arXiv:1706.06223
ADS
MathSciNet
Google Scholar
Shape USQCD Collaboration, Hadrons and nuclei. Eur. Phys. J. A 55, 193 (2019). arXiv:1904.09512
C.B. Lang, The hadron spectrum from lattice QCD. Prog. Part. Nucl. Phys. 61, 35 (2008). arXiv:0711.3091
ADS
Google Scholar
M. Döring, Resonances and multi-particle states. PoS LATTICE2013, 006 (2014)
Google Scholar
R.A. Briceño, Z. Davoudi, T.C. Luu, Nuclear reactions from lattice QCD. J. Phys. G42, 023101 (2015). arXiv:1406.5673
ADS
Google Scholar
T.D. Lee, K. Huang, C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135 (1957)
ADS
MathSciNet
MATH
Google Scholar
K. Huang, C.N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767 (1957)
ADS
MathSciNet
MATH
Google Scholar
T.T. Wu, Ground state of a Bose system of hard spheres. Phys. Rev. 115, 1390 (1959)
ADS
MathSciNet
MATH
Google Scholar
S. Tan, Three-boson problem at low energy and implications for dilute Bose–Einstein condensates. Phys. Rev. A 78, 013636 (2008). arXiv:0709.2530
ADS
Google Scholar
S.R. Beane, W. Detmold, M.J. Savage, \(n\)-Boson energies at finite volume and three-boson interactions. Phys. Rev. D 76, 074507 (2007). arXiv:0707.1670
ADS
Google Scholar
W. Detmold, M.J. Savage, The energy of \(n\) identical bosons in a finite volume at \(O(L^{-7})\). Phys. Rev. D 77, 057502 (2008). arXiv:0801.0763
ADS
Google Scholar
S.R. Beane et al., Charged multi-hadron systems in lattice QCD + QED. arXiv:2003.12130
J.-Y. Pang, J.-J. Wu, H.W. Hammer, U.-G. Meißner, A. Rusetsky, Energy shift of the three-particle system in a finite volume. Phys. Rev. D 99, 074513 (2019). arXiv:1902.01111
ADS
MathSciNet
Google Scholar
M.T. Hansen, S.R. Sharpe, Threshold expansion of the three-particle quantization condition. Phys. Rev. D 93, 096006 (2016). arXiv:1602.00324
ADS
MathSciNet
Google Scholar
F. Romero-López, A. Rusetsky, N. Schlage, C. Urbach, Relativistic \(N\)-particle energy shift in finite volume. arXiv:2010.11715
B.S. DeWitt, Transition from discrete to continuous spectra. Phys. Rev. 103, 1565 (1956)
ADS
MathSciNet
MATH
Google Scholar
D. Agadjanov, M. Döring, M. Mai, U.-G. Meißner, A. Rusetsky, The optical potential on the lattice. JHEP 06, 043 (2016). arXiv: 1603.07205
ADS
Google Scholar
M.T. Hansen, H.B. Meyer, D. Robaina, From deep inelastic scattering to heavy-flavor semileptonic decays: total rates into multihadron final states from lattice QCD. Phys. Rev. D 96, 094513 (2017). arXiv:1704.08993
ADS
Google Scholar
P. Guo, B. Long, Visualizing resonances in finite volume. Phys. Rev. D 102, 074508 (2020). arXiv:2007.10895
ADS
MathSciNet
Google Scholar
R.A. Briceño, J.V. Guerrero, M.T. Hansen, A. Sturzu, The role of boundary conditions in quantum computations of scattering observables. arXiv:2007.01155
F. Müller, A. Rusetsky, On the three-particle analog of the Lellouch–Lüscher formula. arXiv:2012.13957
M.T. Hansen, F. Romero-López, S.R. Sharpe, Decay amplitudes to three hadrons from finite-volume matrix elements. arXiv:2101.10246
M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding, C. Urbach, Scattering of two and three physical pions at maximal isospin from lattice QCD. arXiv:2008.03035
ETM collaboration, The \(\rho \)-resonance with physical pion mass from \(N_f=2\) lattice QCD. arXiv:2006.13805
A. Alexandru, R. Brett, C. Culver, M. Döring, D. Guo, F.X. Lee et al., Finite-volume energy spectrum of the \(K^-K^-K^-\) system. Phys. Rev. D 102, 114523 (2020). arXiv:2009.12358
ADS
Google Scholar
J. Gasser, H. Leutwyler, Chiral perturbation theory to one loop. Ann. Phys. 158, 142 (1984)
ADS
MathSciNet
Google Scholar
S. Weinberg, Phenomenological Lagrangians. Physica A 96, 327 (1979)
ADS
Google Scholar
J. Gasser, H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985)
ADS
Google Scholar
J. Gasser, M.E. Sainio, A. Svarc, Nucleons with chiral loops. Nucl. Phys. B 307, 779 (1988)
ADS
Google Scholar
V. Bernard, N. Kaiser, J. Kambor, U.G. Meißner, Chiral structure of the nucleon. Nucl. Phys. B 388, 315 (1992)
ADS
Google Scholar
H.-B. Tang, A new approach to chiral perturbation theory for matter fields. arXiv:hep-ph/9607436
T. Becher, H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 9, 643 (1999). arXiv: hep-ph/9901384
ADS
Google Scholar
P.J. Ellis, H.-B. Tang, Pion nucleon scattering in a new approach to chiral perturbation theory. Phys. Rev. C 57, 3356 (1998). arXiv:hep-ph/9709354
ADS
Google Scholar
V. Bernard, U.-G. Meißner, Chiral perturbation theory. Ann. Rev. Nucl. Part. Sci. 57, 33 (2007). arXiv:hep-ph/0611231
ADS
Google Scholar
V. Bernard, Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys. 60, 82 (2008). arXiv:0706.0312
ADS
Google Scholar
S. Scherer, Introduction to chiral perturbation theory. Adv. Nucl. Phys. 27, 277 (2003). arXiv:hep-ph/0210398
Google Scholar
U.G. Meißner, Recent developments in chiral perturbation theory. Rept. Prog. Phys. 56, 903 (1993). arXiv:hep-ph/9302247
ADS
Google Scholar
B. Kubis, An introduction to chiral perturbation theory. in Workshop on Physics and Astrophysics of Hadrons and Hadronic Matter, vol. 3 (2007). arXiv:hep-ph/0703274
V. Bernard, N. Kaiser, U.-G. Meißner, Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 4, 193 (1995). arXiv:hep-ph/9501384
ADS
Google Scholar
V. Bernard, N. Kaiser, U.G. Meißner, Chiral corrections to the S wave pion–nucleon scattering lengths. Phys. Lett. B 309, 421 (1993). arXiv:hep-ph/9304275
ADS
Google Scholar
Shape Flavour Lattice Averaging Group Collaboration, FLAG review 2019: Flavour Lattice Averaging Group (FLAG). Eur. Phys. J. C 80, 113 (2020). arXiv:1902.08191
J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary \(f_0(500)\) resonance. Phys. Rept. 658, 1 (2016). arXiv:1510.00653
ADS
Google Scholar
M. Mai, Review of the \({\mathbf{\Lambda }}\)(1405): a curious case of a strange-ness resonance. arXiv:2010.00056
C. Hanhart, J.R. Pelaez, G. Rios, Quark mass dependence of the rho and sigma from dispersion relations and chiral perturbation theory. Phys. Rev. Lett. 100, 152001 (2008). arXiv:0801.2871
ADS
Google Scholar
J. Nebreda, J.R. Peláez, Strange and non-strange quark mass dependence of elastic light resonances from SU(3) unitarized chiral perturbation theory to one loop. Phys. Rev. D 81, 054035 (2010). arXiv:1001.5237
ADS
Google Scholar
D.R. Bolton, R.A. Briceño, D.J. Wilson, Connecting physical resonant amplitudes and lattice QCD. Phys. Lett. B 757, 50 (2016). arXiv:1507.07928
ADS
Google Scholar
M. Döring, B. Hu, M. Mai, Chiral extrapolation of the sigma resonance. Phys. Lett. B 782, 785 (2018). arXiv:1610.10070
ADS
Google Scholar
M. Niehus, M. Hoferichter, B. Kubis, Quark mass dependence of \(\gamma ^{*}\pi \rightarrow \pi \pi \). in 9th International Workshop on Chiral Dynamics (CD18) Durham, NC, USA, September 17-21, 2018 (2019). arXiv:1902.10150
M. Dax, T. Isken, B. Kubis, Quark-mass dependence in \(\omega \rightarrow 3\pi \) decays. Eur. Phys. J. C 78, 859 (2018). arXiv:1808.08957
ADS
Google Scholar
C. Culver, M. Mai, A. Alexandru, M. Döring, F. Lee, Pion scattering in the isospin \(I=2\) channel from elongated lattices. Phys. Rev. D 100, 034509 (2019). arXiv:1905.10202
ADS
MathSciNet
Google Scholar
NA48-2 Collaboration, Precise tests of low energy QCD from K(e4)decay properties. Eur. Phys. J. C 70, 635 (2010)
C.D. Froggatt, J.L. Petersen, Phase shift analysis of \(\pi ^+ \pi ^-\) scattering between 1.0-GeV and 1.8-GeV based on fixed momentum transfer analyticity. 2. Nucl. Phys. B 129, 89 (1977)
ADS
Google Scholar
B. Hyams et al., \(\pi \pi \) phase shift analysis from 600-MeV to 1900-MeV. Nucl. Phys. B 64, 134 (1973)
ADS
Google Scholar
S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski et al., \(\pi \pi \) partial wave analysis from reactions \(\pi ^+p\rightarrow \pi ^+\pi ^-\Delta ^{++}\) and \(\pi ^+ p \rightarrow K^+ K^- \Delta ^{++}\) at 7.1-GeV/c. Phys. Rev. D 7, 1279 (1973)
ADS
Google Scholar
G. Grayer et al., High statistics study of the reaction \(\pi ^-p\rightarrow \pi ^-\pi ^+n\): apparatus, method of analysis, and general features of results at 17-GeV/c. Nucl. Phys. B 75, 189 (1974)
ADS
Google Scholar
L. Rosselet et al., Experimental study of 30,000 K(e4) decays. Phys. Rev. D 15, 574 (1977)
ADS
Google Scholar
G. Janssen, B.C. Pearce, K. Holinde, J. Speth, On the structure of the scalar mesons \(f0\) (975) and \(a0\) (980). Phys. Rev. D 52, 2690 (1995). arXiv:nucl-th/9411021
ADS
Google Scholar
P. Estabrooks, A.D. Martin, pi pi Phase shift analysis below the K anti-K threshold. Nucl. Phys. B 79, 301 (1974)
ADS
Google Scholar
J.A. Oller, E. Oset, J.R. Pelaez, Meson meson interaction in a nonperturbative chiral approach. Phys. Rev. D 59, 074001 (1999). arXiv:hep-ph/9804209
ADS
Google Scholar
B. Hu, R. Molina, M. Döring, A. Alexandru, Two-flavor simulations of the \(\rho (770)\) and the role of the \(K\bar{K}\) channel. Phys. Rev. Lett. 117, 122001 (2016). arXiv:1605.04823
ADS
Google Scholar
B. Hu, R. Molina, M. Döring, M. Mai, A. Alexandru, Chiral extrapolations of the \(\varvec {\rho (770)}\) meson in \(\mathbf{N_f=2+1}\) lattice QCD simulations. Phys. Rev. D 96, 034520 (2017). arXiv:1704.06248
ADS
Google Scholar
J.A. Oller, E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the , f\(_0\)(980), a\(_0\)(980) scalar mesons. Nucl. Phys. A 620, 438 (1997). arXiv:hep-ph/9702314
ADS
Google Scholar
M. Albaladejo, J.A. Oller, Identification of a scalar glueball. Phys. Rev. Lett. 101, 252002 (2008). arXiv:0801.4929
ADS
Google Scholar
Z.-H. Guo, J.A. Oller, Resonances from meson–meson scattering in U(3) CHPT. Phys. Rev. D 84, 034005 (2011). arXiv:1104.2849
ADS
Google Scholar
Z.-H. Guo, J.A. Oller, J. Ruiz de Elvira, Chiral dynamics in U(3) unitary chiral perturbation theory. Phys. Lett. B 712, 407 (2012). arXiv:1203.4381
ADS
Google Scholar
X.-K. Guo, Z.-H. Guo, J.A. Oller, J.J. Sanz-Cillero, Scrutinizing the \(\eta \)-\(\eta ^{\prime }\) mixing, masses and pseudoscalar decay constants in the framework of U(3) chiral effective field theory. JHEP 06, 175 (2015). arXiv:1503.02248
ADS
Google Scholar
Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Chiral study of the \(a_0(980)\) resonance and \(\pi \eta \) scattering phase shifts in light of a recent lattice simulation. Phys. Rev. D 95, 054004 (2017). arXiv:1609.08096
ADS
Google Scholar
T.N. Truong, Chiral perturbation theory and final state theorem. Phys. Rev. Lett. 61, 2526 (1988)
ADS
Google Scholar
A. Dobado, J.R. Pelaez, The inverse amplitude method in chiral perturbation theory. Phys. Rev. D 56, 3057 (1997). arXiv: hep-ph/9604416
ADS
Google Scholar
A. Gómez Nicola, J.R. Peláez, G. Rios, The inverse amplitude method and adler zeros. Phys. Rev. D 77, 056006 (2008). arXiv:0712.2763
P.C. Bruns, M. Mai, Chiral symmetry constraints on resonant amplitudes. Phys. Lett. B 778, 43 (2018). arXiv:1707.08983
ADS
MathSciNet
Google Scholar
J.R. Pelaez, G. Rios, Nature of the \(f0\)(600) from its \(N(c)\) dependence at two loops in unitarized chiral perturbation theory. Phys. Rev. Lett. 97, 242002 (2006). arXiv:hep-ph/0610397
ADS
Google Scholar
M. Niehus, M. Hoferichter, B. Kubis, J. Ruiz de Elvira, Two-loop analysis of the pion-mass dependence of the \(\rho \) meson. arXiv:2009.04479
J.R. Peláez, A. Rodas, J.R. de Elvira, Precision dispersive approaches versus unitarized chiral perturbation theory for the lightest scalar resonances \( /f_0(980)\) and \(\kappa /K_0^*(700)\). arXiv:2101.06506
D. Fernandez-Fraile, A. Gomez Nicola, E.T. Herruzo, Pion scattering poles and chiral symmetry restoration. Phys. Rev. D 76, 085020 (2007). arXiv:0707.1424
ADS
Google Scholar
R. Molina, J. Ruiz de Elvira, Light- and strange-quark mass dependence of the \(\rho (770)\) meson revisited. arXiv:2005.13584
R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring, F.X. Lee, Three-body interactions from the finite-volume QCD spectrum. arXiv:2101.06144]
M. Lüscher, U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nucl. Phys. B 339, 222 (1990)
ADS
MathSciNet
Google Scholar
N. Miller et al., \(F_K / F_\pi \) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles. Phys. Rev. D 102, 034507 (2020). arXiv:2005.04795
ADS
Google Scholar
S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage, A. Torok, Multi-pion systems in lattice QCD and the three-pion interaction. Phys. Rev. Lett. 100, 082004 (2008). arXiv:0710.1827
ADS
Google Scholar
W. Detmold, M.J. Savage, A. Torok, S.R. Beane, T.C. Luu, K. Orginos et al., Multi-pion states in lattice QCD and the charged-pion condensate. Phys. Rev. D 78, 014507 (2008). arXiv:0803.2728
ADS
Google Scholar
W. Detmold, K. Orginos, M.J. Savage, A. Walker-Loud, Kaon condensation with lattice QCD. Phys. Rev. D 78, 054514 (2008). arXiv:0807.1856
ADS
Google Scholar
T.D. Blanton, F. Romero-López, S.R. Sharpe, \(I=3\) three-pion scattering amplitude from lattice QCD. Phys. Rev. Lett. 124, 032001 (2020). arXiv:1909.02973
ADS
Google Scholar
C. Culver, M. Mai, R. Brett, A. Alexandru, M. Döring, Three pion spectrum in the \(I=3\) channel from lattice QCD. Phys. Rev. D 101, 114507 (2020). arXiv:1911.09047
ADS
MathSciNet
Google Scholar
M.T. Hansen, R.A. Briceño, R.G. Edwards, C.E. Thomas, D.J. Wilson, The energy-dependent \(\pi ^+ \pi ^+ \pi ^+\) scattering amplitude from QCD. Phys. Rev. Lett. 126, 012001 (2021). arXiv:2009.04931
ADS
Google Scholar
F. Romero-López, A. Rusetsky, C. Urbach, Two- and three-body interactions in \(\varphi ^4\) theory from lattice simulations. Eur. Phys. J. C 78, 846 (2018). arXiv:1806.02367
ADS
Google Scholar
K. Polejaeva, A. Rusetsky, Three particles in a finite volume. Eur. Phys. J. A 48, 67 (2012). arXiv:1203.1241
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Relativistic, model-independent, three-particle quantization condition. Phys. Rev. D 90, 116003 (2014). arXiv:1408.5933
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude. Phys. Rev. D 92, 114509 (2015). arXiv:1504.04248
ADS
Google Scholar
H.-W. Hammer, J.-Y. Pang, A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force. JHEP 09, 109 (2017). arXiv:1706.07700
ADS
MathSciNet
MATH
Google Scholar
H.W. Hammer, J.Y. Pang, A. Rusetsky, Three particle quantization condition in a finite volume: 2. General formalism and the analysis of data. JHEP 10, 115 (2017). arXiv:1707.02176
ADS
MathSciNet
MATH
Google Scholar
M. Mai, M. Döring, Three-body unitarity in the finite volume. Eur. Phys. J. A 53, 240 (2017). arXiv:1709.08222
ADS
Google Scholar
M. Mai, M. Döring, Finite-volume spectrum of \(\pi ^+\pi ^+\) and \(\pi ^+\pi ^+\pi ^+\) systems. Phys. Rev. Lett. 122, 062503 (2019). arXiv:1807.04746
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Lattice QCD and three-particle decays of resonances. Ann. Rev. Nucl. Part. Sci. 69, 65 (2019). arXiv:1901.00483
ADS
Google Scholar
A. Rusetsky, Three particles on the lattice. PoS LATTICE2019, 281 (2019). arXiv:1911.01253
Google Scholar
T.D. Blanton, S.R. Sharpe, Alternative derivation of the relativistic three-particle quantization condition. Phys. Rev. D 102, 054520 (2020). arXiv:2007.16188
ADS
MathSciNet
Google Scholar
T.D. Blanton, S.R. Sharpe, Equivalence of relativistic three-particle quantization conditions. Phys. Rev. D 102, 054515 (2020). arXiv:2007.16190
ADS
MathSciNet
Google Scholar
R.A. Briceño, Z. Davoudi, Three-particle scattering amplitudes from a finite volume formalism. Phys. Rev. D 87, 094507 (2013). arXiv:1212.3398
ADS
Google Scholar
L. Roca, E. Oset, Scattering of unstable particles in a finite volume: the case of \(\pi \rho \) scattering and the \(a_1(1260)\) resonance. Phys. Rev. D 85, 054507 (2012). arXiv:1201.0438
ADS
Google Scholar
S. Bour, H.-W. Hammer, D. Lee, U.-G. Meißner, Benchmark calculations for elastic fermion-dimer scattering. Phys. Rev. C 86, 034003 (2012). arXiv:1206.1765
ADS
Google Scholar
U.-G. Meißner, G. Ríos, A. Rusetsky, Spectrum of three-body bound states in a finite volume. Phys. Rev. Lett. 114, 091602 (2015). arXiv:1412.4969
ADS
MathSciNet
Google Scholar
M. Jansen, H.W. Hammer, Y. Jia, Finite volume corrections to the binding energy of the \(X(3872)\). Phys. Rev. D 92, 114031 (2015). arXiv:1505.04099
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Perturbative results for two and three particle threshold energies in finite volume. Phys. Rev. D 93, 014506 (2016). arXiv:1509.07929
ADS
Google Scholar
P. Guo, One spatial dimensional finite volume three-body interaction for a short-range potential. Phys. Rev. D 95, 054508 (2017). arXiv:1607.03184
ADS
Google Scholar
S. König, D. Lee, Volume dependence of \(N\)-body bound states. Phys. Lett. B 779, 9 (2018). arXiv:1701.00279
ADS
Google Scholar
R.A. Briceño, M.T. Hansen, S.R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle \(S\) matrix for relativistic systems of identical scalar particles. Phys. Rev. D 95, 074510 (2017). arXiv:1701.07465
ADS
MathSciNet
Google Scholar
S.R. Sharpe, Testing the threshold expansion for three-particle energies at fourth order in \(\phi ^4\) theory. arXiv:1707.04279
P. Guo, V. Gasparian, Numerical approach for finite volume three-body interaction. Phys. Rev. D 97, 014504 (2018). arXiv:1709.08255
ADS
MathSciNet
Google Scholar
P. Guo, V. Gasparian, An solvable three-body model in finite volume. Phys. Lett. B 774, 441 (2017). arXiv:1701.00438
ADS
MATH
Google Scholar
Y. Meng, C. Liu, U.-G. Meißner, A. Rusetsky, Three-particle bound states in a finite volume: unequal masses and higher partial waves. Phys. Rev. D 98, 014508 (2018). arXiv:1712.08464
ADS
MathSciNet
Google Scholar
P. Guo, M. Döring, A.P. Szczepaniak, Variational approach to \(N\)-body interactions in finite volume. Phys. Rev. D 98, 094502 (2018). arXiv:1810.01261
ADS
MathSciNet
Google Scholar
P. Guo, T. Morris, Multiple-particle interaction in (1+1)-dimensional lattice model. Phys. Rev. D 99, 014501 (2019). arXiv:1808.07397
ADS
MathSciNet
Google Scholar
P. Klos, S. König, H.W. Hammer, J.E. Lynn, A. Schwenk, Signatures of few-body resonances in finite volume. Phys. Rev. C 98, 034004 (2018). arXiv:1805.02029
ADS
Google Scholar
R.A. Briceño, M.T. Hansen, S.R. Sharpe, Numerical study of the relativistic three-body quantization condition in the isotropic approximation. Phys. Rev. D 98, 014506 (2018). arXiv:1803.04169
ADS
MathSciNet
Google Scholar
R.A. Briceño, M.T. Hansen, S.R. Sharpe, Three-particle systems with resonant subprocesses in a finite volume. Phys. Rev. D 99, 014516 (2019). arXiv:1810.01429
ADS
Google Scholar
M. Döring, H.W. Hammer, M. Mai, J.Y. Pang, A. Rusetsky, J. Wu, Three-body spectrum in a finite volume: the role of cubic symmetry. Phys. Rev. D 97, 114508 (2018). arXiv:1802.03362
ADS
Google Scholar
A. Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni et al., Equivalence of three-particle scattering formalisms. Phys. Rev. D 100, 034508 (2019). arXiv:1905.12007
ADS
MathSciNet
Google Scholar
M. Mai, M. Döring, C. Culver, A. Alexandru, Three-body unitarity versus finite-volume \(\pi ^+\pi ^+\pi ^+\) spectrum from lattice QCD. Phys. Rev. D 101, 054510 (2020). arXiv:1909.05749
ADS
Google Scholar
P. Guo, Propagation of particles on a torus. Phys. Lett. B 804, 135370 (2020). arXiv:1908.08081
MathSciNet
MATH
Google Scholar
T.D. Blanton, F. Romero-López, S.R. Sharpe, Implementing the three-particle quantization condition including higher partial waves. JHEP 03, 106 (2019). arXiv: 1901.07095
ADS
MathSciNet
Google Scholar
R.A. Briceño, M.T. Hansen, S.R. Sharpe, A.P. Szczepaniak, Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism. Phys. Rev. D 100, 054508 (2019). arXiv:1905.11188
ADS
Google Scholar
F. Romero-López, S.R. Sharpe, T.D. Blanton, R.A. Briceño, M.T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states. JHEP 10, 007 (2019). arXiv:1908.02411
ADS
MathSciNet
MATH
Google Scholar
P. Guo, M. Döring, Lattice model of heavy-light three-body system. Phys. Rev. D 101, 034501 (2020). arXiv:1910.08624
ADS
MathSciNet
Google Scholar
S. Zhu, S. Tan, \(d\)-dimensional Lüscher’s formula and the near-threshold three-body states in a finite volume. arXiv:1905.05117
J.-Y. Pang, J.-J. Wu, L.-S. Geng, \(DDK\) system in finite volume. Phys. Rev. D 102, 114515 (2020). arXiv:2008.13014
ADS
Google Scholar
M.T. Hansen, F. Romero-López, S.R. Sharpe, Generalizing the relativistic quantization condition to include all three-pion isospin channels. JHEP 20, 047 (2020). arXiv:2003.10974
MathSciNet
Google Scholar
P. Guo, Modeling few-body resonances in finite volume. Phys. Rev. D 102, 054514 (2020). arXiv:2007.12790
ADS
MathSciNet
Google Scholar
P. Guo, Threshold expansion formula of \(N\) bosons in a finite volume from a variational approach. Phys. Rev. D 101, 054512 (2020). arXiv:2002.04111
ADS
MathSciNet
Google Scholar
S. König, Few-body bound states and resonances in finite volume. Few Body Syst. 61, 20 (2020). arXiv:2005.01478
ADS
Google Scholar
T.D. Blanton, S.R. Sharpe, Relativistic three-particle quantization condition for nondegenerate scalars. arXiv:2011.05520
F. Müller, A. Rusetsky, T. Yu, Finite-volume energy shift of the three-pion ground state. arXiv:2011.14178
S. Kreuzer, H.W. Hammer, The triton in a finite volume. Phys. Lett. B 694, 424 (2011). arXiv:1008.4499
ADS
Google Scholar
S. Kreuzer, H.W. Hammer, On the modification of the Efimov spectrum in a finite cubic box. Eur. Phys. J. A 43, 229 (2010). arXiv:0910.2191
ADS
Google Scholar
S. Kreuzer, H.W. Hammer, Efimov physics in a finite volume. Phys. Lett. B 673, 260 (2009). arXiv:0811.0159
ADS
Google Scholar
S. Kreuzer, H.W. Grießhammer, Three particles in a finite volume: the breakdown of spherical symmetry. Eur. Phys. J. A 48, 93 (2012). arXiv:1205.0277
ADS
Google Scholar
G. Colangelo, J. Gasser, B. Kubis, A. Rusetsky, Cusps in \(K\rightarrow 3\pi \) decays. Phys. Lett. B 638, 187 (2006). arXiv:hep-ph/0604084
ADS
Google Scholar
J. Gasser, B. Kubis, A. Rusetsky, Cusps in \(K\rightarrow 3\pi \) decays: a theoretical framework. Nucl. Phys. B 850, 96 (2011). arXiv:1103.4273
ADS
MATH
Google Scholar
R. Aaron, R.D. Amado, J.E. Young, Relativistic three-body theory with applications to pi-minus n scattering. Phys. Rev. 174, 2022 (1968)
ADS
Google Scholar
M. Mai, B. Hu, M. Döring, A. Pilloni, A. Szczepaniak, Three-body unitarity with isobars revisited. Eur. Phys. J. A 53, 177 (2017). arXiv:1706.06118
ADS
Google Scholar
Shape JPAC Collaboration, Phenomenology of Relativistic \(\mathbf{3} \rightarrow \mathbf{3}\) reaction amplitudes within the isobar approximation. Eur. Phys. J. C 79, 56 (2019). arXiv:1809.10523
A.W. Jackura, R.A. Briceño, S.M. Dawid, M.H.E. Islam, C. McCarty, Solving relativistic three-body integral equations in the presence of bound states. arXiv:2010.09820
S.M. Dawid, A.P. Szczepaniak, Bound states in the B-matrix formalism for the three-body scattering. Phys. Rev. D 103, 014009 (2021). arXiv:2010.08084
ADS
MathSciNet
Google Scholar
D. Sadasivan, M. Mai, H. Akdag, M. Döring, Dalitz plots and lineshape of \(a_1(1260)\) from a relativistic three-body unitary approach. Phys. Rev. D 101, 094018 (2020). arXiv:2002.12431
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Applying the relativistic quantization condition to a three-particle bound state in a periodic box. Phys. Rev. D 95, 034501 (2017). arXiv:1609.04317
ADS
MathSciNet
Google Scholar
P. Guo, B. Long, Multi- \(\pi ^+\) systems in a finite volume. Phys. Rev. D 101, 094510 (2020). arXiv:2002.09266
ADS
MathSciNet
Google Scholar
H.-W. Hammer, A. Nogga, A. Schwenk, Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197 (2013). arXiv:1210.4273
ADS
Google Scholar
Shape NPLQCD Collaboration, The \(K^+ K^+\) scattering length from lattice QCD. Phys. Rev. D 77, 094507 (2008). arXiv:0709.1169
S. Beane, P. Bedaque, K. Orginos, M. Savage, \(f_K/f_\pi \) in Full QCD with domain wall valence quarks. Phys. Rev. D 75, 094501 (2007). arXiv:hep-lat/0606023
ADS
Google Scholar
G. Rendon, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies et al., \(I=1/2\)\(S\)-wave and \(P\)-wave \(K\pi \) scattering and the \(\kappa \) and \(K^*\) resonances from lattice QCD. arXiv:2006.14035
J.R. Pelaez, G. Rios, Chiral extrapolation of light resonances from one and two-loop unitarized chiral perturbation theory versus lattice results. Phys. Rev. D 82, 114002 (2010). arXiv:1010.6008
ADS
Google Scholar
J. Nebreda, J. Pelaez, G. Rios, Chiral extrapolation of pion–pion scattering phase shifts within standard and unitarized chiral perturbation theory. Phys. Rev. D 83, 094011 (2011). arXiv:1101.2171
ADS
Google Scholar
A. GomezNicola, J.R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and its unitarization. Phys. Rev. D 65, 054009 (2002). arXiv:hep-ph/0109056
ADS
Google Scholar
L. Lellouch, M. Lüscher, Weak transition matrix elements from finite volume correlation functions. Commun. Math. Phys. 219, 31 (2001). arXiv:hep-lat/0003023
ADS
MathSciNet
MATH
Google Scholar
RBC, UKQCD Collaboration, Direct CP violation and the \(\Delta I=1/2\) rule in \(K\rightarrow \pi \pi \) decay from the standard model. Phys. Rev. D 102, 054509 (2020). arXiv:2004.09440
N.H. Christ, C. Kim, T. Yamazaki, Finite volume corrections to the two-particle decay of states with non-zero momentum. Phys. Rev. D 72, 114506 (2005). arXiv:hep-lat/0507009
ADS
Google Scholar
M.T. Hansen, S.R. Sharpe, Multiple-channel generalization of Lellouch–Lüscher formula. Phys. Rev. D 86, 016007 (2012). arXiv:1204.0826
ADS
Google Scholar
V. Bernard, D. Hoja, U.G. Meißner, A. Rusetsky, Matrix elements of unstable states. JHEP 09, 023 (2012). arXiv:1205.4642
ADS
MathSciNet
MATH
Google Scholar
A. Agadjanov, V. Bernard, U.G. Meißner, A. Rusetsky, A framework for the calculation of the \(\Delta N\gamma ^*\) transition form factors on the lattice. Nucl. Phys. B 886, 1199 (2014). arXiv:1405.3476
ADS
MathSciNet
MATH
Google Scholar
A. Agadjanov, V. Bernard, U.-G. Meißner, A. Rusetsky, The \(B\rightarrow K^*\) form factors on the lattice. Nucl. Phys. B 910, 387 (2016). arXiv:1605.03386
ADS
MATH
Google Scholar
R.A. Briceño, M.T. Hansen, Multichannel 0 \(\rightarrow \) 2 and 1 \(\rightarrow \) 2 transition amplitudes for arbitrary spin particles in a finite volume. Phys. Rev. D 92, 074509 (2015). arXiv:1502.04314
ADS
Google Scholar
R.A. Briceño, M.T. Hansen, A. Walker-Loud, Multichannel 1 \(\rightarrow \) 2 transition amplitudes in a finite volume. Phys. Rev. D 91, 034501 (2015). arXiv:1406.5965
ADS
Google Scholar
H.B. Meyer, Lattice QCD and the timelike pion form factor. Phys. Rev. Lett. 107, 072002 (2011). arXiv:1105.1892
ADS
Google Scholar
M. Padmanath, C.B. Lang, S. Prelovsek, X(3872) and Y(4140) using diquark–antidiquark operators with lattice QCD. Phys. Rev. D 92, 034501 (2015). arXiv:1503.03257
ADS
Google Scholar
V. Baru, E. Epelbaum, A.A. Filin, C. Hanhart, U.G. Meißner, A.V. Nefediev, Quark mass dependence of the \(X(3872)\) binding energy. Phys. Lett. B 726, 537 (2013). arXiv:1306.4108
ADS
MATH
Google Scholar
E.J. Garzon, R. Molina, A. Hosaka, E. Oset, Strategies for an accurate determination of the \(X(3872)\) energy from QCD lattice simulations. Phys. Rev. D 89, 014504 (2014). arXiv:1310.0972
ADS
Google Scholar
ALICE Collaboration, One-dimensional pion, kaon, and proton femtoscopy in Pb–Pb collisions at \(\sqrt{s_{\rm {NN}}}\) =2.76 TeV. Phys. Rev. C 92, 054908 (2015). arXiv:1506.07884
D. Kaplan, A. Nelson, Strange goings on in dense nucleonic matter. Phys. Lett. B 175, 57 (1986)
ADS
Google Scholar
G.-Q. Li, C. Lee, G. Brown, Kaons in dense matter, kaon production in heavy ion collisions, and kaon condensation in neutron stars. Nucl. Phys. A 625, 372 (1997). arXiv:nucl-th/9706057
ADS
Google Scholar
S. Pal, D. Bandyopadhyay, W. Greiner, Anti-K**0 condensation in neutron stars. Nucl. Phys. A 674, 553 (2000). arXiv:astro-ph/0001039
ADS
Google Scholar
C. Lee, Kaon condensation in dense stellar matter. Phys. Rept. 275, 255 (1996)
ADS
Google Scholar
D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Hyperon puzzle: hints from quantum Monte Carlo calculations. Phys. Rev. Lett. 114, 092301 (2015). arXiv:1407.4448
ADS
Google Scholar
T. Hell, W. Weise, Dense baryonic matter: constraints from recent neutron star observations. Phys. Rev. C 90, 045801 (2014). arXiv:1402.4098
ADS
Google Scholar
A. Gal, E. Hungerford, D. Millener, Strangeness in nuclear physics. Rev. Mod. Phys. 88, 035004 (2016). arXiv:1605.00557
ADS
Google Scholar
M.J. Savage, Nuclear physics. PoS LATTICE2016, 021 (2016). arXiv:1611.02078
Google Scholar
C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas et al., Towards grounding nuclear physics in QCD. 10 (2019). arXiv:1910.07961
B. Hörz et al., Two-nucleon S-wave interactions at the \(SU(3)\) flavor-symmetric point with \(m_{ud}\simeq m_s^{\rm phys}\): a first lattice QCD calculation with the stochastic Laplacian heaviside method. Phys. Rev. C 103, 014003 (2021). arXiv:2009.11825
ADS
Google Scholar
K. Orginos, A. Parreño, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Two nucleon systems at \(m_\pi \sim 450~{\rm MeV}\) from lattice QCD. Phys. Rev. D 92, 114512 (2015). arXiv:1508.07583
ADS
Google Scholar
A. Gade, B.M. Sherrill, NSCL and FRIB at Michigan State University: nuclear science at the limits of stability. Phys. Scripta 91, 053003 (2016)
ADS
Google Scholar