Skip to main content
Log in

Periodic solutions and circuit design of chaos in a unified stretch-twist-fold flow

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Based on the original stretch-twist-fold flow, we propose a unified stretch–twist–fold (USTF) flow. We explore the conditions that zero-Hopf bifurcation occurs at the origin. Using the first-order averaging theorem, a periodic solution produced from the zero-Hopf equilibrium is derived. In addition, we obtain the conclusion that for parameter \(\alpha \) large enough, the periodic orbit of USTF flow exists as well unstable. Finally, circuit design has been built for implementing the new system, showing a good agreement between computer simulations and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

My manuscript has no associated data or the data will not be deposited. \(\ldots \).

References

  1. S.I. Vainshtein, Y.B. Zel’dovich, Origin of magnetic fields in astrophysics (Turbulent Dynamo Mechanisms). Soviet Phys. Uspekhi 15, 159–172 (1972)

    Article  ADS  Google Scholar 

  2. S. Childress, A.D. Gilbert, Stretch, Twist, Fold: the Fast Dynamo (Springer, Berlin, 1995)

    MATH  Google Scholar 

  3. H.K. Moffatt, Stretch, twist and fold. Nature 341, 285–286 (1989)

    Article  ADS  Google Scholar 

  4. S.I. Vainshtein, R.Z. Sagdeev, R. Rosner, E.J. Kim, Fractal properties of the stretch-twist-fold magnetic dynamo. Phys. Rev. E 53, 4729–4744 (1996)

    Article  ADS  Google Scholar 

  5. S.I. Vainshtein, R.Z. Sagdeev, R. Rosner, Stretch-twist-fold and ABC nonlinear dynamos: restricted chaos. Phys. Rev. E 56, 1605–1622 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Asgari-Targhi, M.A. Berger, Writhe in the stretch-twist-fold dynamo. Geophys. Astrophys. Fluid Dyn. 103, 69–87 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Bao, Q. Yang, Complex dynamics in the stretch-twist-fold flow. Nonlinear Dyn. 61, 773–781 (2010)

    Article  MathSciNet  Google Scholar 

  8. B. Yue, M. Aqeel, Chaotification in the stretch-twist-fold (STF) flow. Chin. Sci. Bull. 58, 1655–1662 (2013)

    Article  Google Scholar 

  9. J. Bao, Q. Yang, Darboux integrability of the stretch-twist-fold flow. Nonlinear Dyn. 76, 797–807 (2014)

    Article  MathSciNet  Google Scholar 

  10. A.J. Maciejewski, M. Przybylska, Integrability analysis of the stretch-twist-fold flow. J. Nonlinear Sci. 30, 1607–1649 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Bao, Q. Yang, Bifurcation analysis of the generalized stretch-twist-fold flow. Appl. Math. Comput. 229, 16–26 (2014)

    MathSciNet  MATH  Google Scholar 

  12. A. Azam, M. Aqeel, S. Ahmad, F. Ahmad, Chaotic behavior of modified stretch-twist-fold (STF) flow with fractal property. Nonlinear Dyn. 90, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  13. K. Bajer, Flow kinematics and magnetic equilibria PhD thesis, University of Cambridge (1989)

  14. N.H. Hussein, A.I. Amen, Zero-Hopf bifurcation in the generalized stretch-twist-fold flow. Sultan Qaboos Univ. J. Sci. 24, 122–128 (2019)

    Google Scholar 

  15. J. Llibre, E. Pérez-Chavela, Zero-Hopf bifurcation for a class of Lorenz-type systems. Discret. Cont. Dyn. Syst. Ser. B 19, 1731–1736 (2014)

    MathSciNet  MATH  Google Scholar 

  16. L. Cid-Montiel, J. Llibre, C. Stoica, Zero-Hopf bifurcation in a hyperchaotic Lorenz system. Nonlinear Dyn. 75, 561–566 (2014)

    Article  MathSciNet  Google Scholar 

  17. J. Llibre, M.R. Cândid, Zero-Hopf bifurcations in a hyperchaotic Lorenz system II. Int. J. Nonlinear Sci. 25, 3–26 (2017)

    MathSciNet  MATH  Google Scholar 

  18. R.H. Salih, Hopf bifurcation and centre bifurcation in three dimensional Lotka-Volterra systems, PhD thesis, University of Plymouth (2015)

  19. J. Ginoux, J. Llibre, Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type. Math. Methods Appl. Sci. 40, 7858–7866 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Han, J. Llibre, Y. Tian, On the zero-Hopf bifurcation of the Lotka-Volterra systems in R3. Mathematics 8, 1137 (2020)

    Article  Google Scholar 

  21. R.D. Euzébio, J. Llibre, Zero-Hopf bifurcation in a Chua system. Nonlinear Anal. Real World Appl. 37, 31–40 (2017)

    Article  MathSciNet  Google Scholar 

  22. J. Li, Y. Liu, Z. Wei, Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system. Adv. Differ. Equ. 2018, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  23. V. Mel’nikov, On the stability of the center for time-periodic perturbation. Trans. Moscow Math. Soc. 12, 1–57 (1963)

    MathSciNet  MATH  Google Scholar 

  24. S. Chow, J.K. Hale, J. Mallet-Paret, An example of bifurcation to homoclinic orbits. J. Differ. Equ. 37, 351–373 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Holmes, J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Ration. Mech. Anal. 76, 135–165 (1981)

    Article  MathSciNet  Google Scholar 

  26. P. Holmes, J. Marsden, Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23, 669–675 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Gidea, R. de la Llave, Global Melnikov theory in Hamiltonian systems with general time-dependent perturbations. J. Nonlinear Sci. 28, 1657–1707 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Wiggins, P. Holmes, Periodic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18, 592–611 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Wiggins, P. Holmes, Homoclinic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18, 612–629 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Fatou, Sur le mouvement d’un système soumis à des forces à courte période. Bulletin de la Société Mathématique de France 56, 98–139 (1928)

    Article  MathSciNet  Google Scholar 

  31. N. Bogoliubov, N. Krylov, The application of methods of nonlinear mechanics in the theory of stationary oscillations. Sci. Kiev. 118, 109 (1934)

    Google Scholar 

  32. N. Bogoliubov, On Some Statistical Methods in Mathematical Physics Kiev, Izdat. Akad. Nauk Ukr. SSR (1945)

  33. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer, Berlin, 1990)

    Book  Google Scholar 

  34. V.I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer, Berlin, 2013)

    Google Scholar 

Download references

Acknowledgements

We thank the editors and referees for their comments which helped us improve the presentation of this paper. This work was supported by the National Natural Science Foundation of China (No. 11772306), Zhejiang Provincial Natural Science Foundation of China under Grant (No. LY20A020001), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (CUGGC05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouchao Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wei, Z. & Zhang, W. Periodic solutions and circuit design of chaos in a unified stretch-twist-fold flow. Eur. Phys. J. Spec. Top. 230, 1971–1978 (2021). https://doi.org/10.1140/epjs/s11734-021-00127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00127-8

Navigation