Skip to main content

Advertisement

Log in

On the thermodynamics of the difference between energy transfer rate and heat engine efficiency

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the difference between the energy transfer rate and the engine efficiency with a microscopic model, widely used in the theoretical description of solar cells, as well as in light-harvesting systems. We show no violation of the second law of thermodynamics by correctly assessing the useful output work, even with the simple model treating the later work conversion as a simple “sink”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.F. Ramsey, Phys. Rev. 103, 20 (1956)

    Article  ADS  Google Scholar 

  2. D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, Chem. Sci. 8, 1008 (2017)

    Article  Google Scholar 

  3. X.-G. Zhu, S.P. Long, D.R. Ort, Annu. Rev. Plant Biol. 61, 235 (2010)

    Article  Google Scholar 

  4. G.D. Scholes, G.R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 3, 763 (2011)

    Article  Google Scholar 

  5. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 23, 1 (2015)

    Article  Google Scholar 

  6. Y.-C. Cheng, G.R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009)

    Article  ADS  Google Scholar 

  7. A. Ishizaki, G.R. Fleming, Annu. Rev. Condens. Matter. Phys. 3, 333 (2012)

    Article  Google Scholar 

  8. E. Collini, C.Y. Wong, K.E. Wilk, P.M. Curmi, P. Brumer, G.D. Scholes, Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  9. G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Manvcal, Y.-C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  10. H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007)

    Article  ADS  Google Scholar 

  11. I.S. Ryu, H. Dong, G.R. Fleming, J. Phys. Chem. B 118, 1381 (2014)

    Article  Google Scholar 

  12. E. Romero, R. Augulis, V.I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, Nat. Phys. 10, 676 (2014)

    Article  Google Scholar 

  13. F.D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S.S. Senlik, D.E. Wilcox, C.F. Yocum, L. Valkunas, D. Abramavicius, J.P. Ogilvie, Nat. Chem. 6, 706 (2014)

    Article  Google Scholar 

  14. G.S. Schlau-Cohen, A. Ishizaki, T.R. Calhoun, N.S. Ginsberg, M. Ballottari, R. Bassi, G.R. Fleming, Nat. Chem. 4, 389 (2012)

    Article  Google Scholar 

  15. M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio, Quantum effects in biology (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  16. J.-L. Br’edas, E.H. Sargent, G.D. Scholes, Nat. Mater. 16, 35 (2016)

    Article  ADS  Google Scholar 

  17. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. U.S.A. 108, 15097 (2011)

    Article  ADS  Google Scholar 

  18. D. Xu, C. Wang, Y. Zhao, J. Cao, New J. Phys. 18, 023003 (2016)

    Article  ADS  Google Scholar 

  19. M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010)

    Article  ADS  Google Scholar 

  20. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Phys. Rev. A 84, 053818 (2011)

    Article  ADS  Google Scholar 

  21. R.E. Blankenship, Molecular mechanisms of photosynthesis (Wiley, Hoboken, 2013)

    Google Scholar 

  22. R. Alicki, J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  23. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  24. C.B. Daug, W. Niedenzu, Ö.E. Müstecapliouglu, G. Kurizki, Entropy 18, 244 (2016)

    Article  ADS  Google Scholar 

  25. D. Gelbwaser-Klimovsky, G. Kurizki, Sci. Rep. 5, 7809 (2015)

    Article  ADS  Google Scholar 

  26. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016)

    Article  ADS  Google Scholar 

  27. W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018)

    Article  ADS  Google Scholar 

  28. A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A.I. Lvovsky, I. Mazets, M.O. Scully, G. Kurizki, PNAS 115, 9941 (2018)

    Article  ADS  Google Scholar 

  29. M. Planck, Treatise on Thermodynamics, (3rd Version) (New York, Dover, 1945)

    Google Scholar 

  30. H. Spohn, J. Math. Phys. 19, 1227 (1978)

    Article  ADS  Google Scholar 

  31. H. Dong, D.-Z. Xu, J.-F. Huang, C.-P. Sun, Light: Sci. Appl. 1, e2 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Scully.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Ghosh, A., Kim, M.B. et al. On the thermodynamics of the difference between energy transfer rate and heat engine efficiency. Eur. Phys. J. Spec. Top. 230, 867–871 (2021). https://doi.org/10.1140/epjs/s11734-021-00091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00091-3

Navigation