Skip to main content
Log in

Observation of plasmonically induced transparency by the pump-probe technique

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We have studied the pump-probe spectroscopy of graphene oxide quantum dots. In the presence of gold nanoparticles, strong modifications of pump-probe spectra have been observed. We develop a theoretical model to explain the observed features of the pump-probe spectra. The model takes into account self-consistently the interaction of exciton with surface plasmonic waves excited in the gold nanoparticles, and it provides a qualitative agreement with the observed pump-probe spectra. We have demonstrated that the using gold nanoparticles can increase sensitivity, and potentially to have a broader range of applications to both spectroscopy and microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Arimondo, in Progress in Optics, edited by E. Wolf (Elsevier Science, Amsterdam, 1996), Vol. XXXV, p. 257

  2. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  3. S.E. Harris, Phys. Today 50, 36 (1997)

    Google Scholar 

  4. S.E. Harris, Phys. Rev. Lett. 70, 552 (1993)

    ADS  Google Scholar 

  5. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    ADS  Google Scholar 

  6. O. Kocharovskaya, Y.I. Khanin, Sov. Phys. JETP 63, 945 (1986)

    Google Scholar 

  7. V.A. Sautenkov, Y.V. Rostovtsev, C.Y. Ye, G.R. Welch, O. Kocharovskaya, M.O. Scully, Phys. Rev. A 71, 063804 (2005)

    ADS  Google Scholar 

  8. A.S. Zibrov et al., Phys. Rev. Lett. 76, 3925 (1996)

    ADS  Google Scholar 

  9. S. Harris, A. Sokolov, Phys. Rev. Lett. 81, 2894 (1998)

    ADS  Google Scholar 

  10. J. Kitching, L. Hollberg, Phys. Rev. A 59, 4685 (1999) ( in solids doped by rare-earth ions B. S. Ham et al., Opt. Commun. 144, 227, 1997)

  11. B.S. Ham et al., Opt. Lett. 22, 1138 (1997)

    ADS  Google Scholar 

  12. A. Imamoglu, Opt. Commun. 179, 179 (2000)

    ADS  Google Scholar 

  13. D.E. Nikonov, A. Imamoglu, M.O. Scully, Phys. Rev. B 59, 12212 (1999) (different wavelengths: from X-ray to microwaves C.J. Wei, N.B. Manson, Phys. Rev. A 60, 2540, 1999)

  14. R. Coussement, Y. Rostovtsev, J. Odeurs et al., Phys. Rev. Lett. 89, 107601 (2002)

    ADS  Google Scholar 

  15. V.A. Sautenkov, H. Li, Y.V. Rostovtsev, M.O. Scully, Phys. Rev. A 81, 063824 (2010)

    ADS  Google Scholar 

  16. I. Carusotto, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. A 68, 063819 (2003)

    ADS  Google Scholar 

  17. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    ADS  Google Scholar 

  18. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    ADS  Google Scholar 

  19. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Phys. Rev. Lett. 82, 5229 (1999)

  20. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999)

    ADS  Google Scholar 

  21. L.J. Wang, A. Kuzmich, A. Dogariu, Nature (London) 406, 277 (2000)

    ADS  Google Scholar 

  22. A. Dogariu, A. Kuzmich, L.J. Wang, Phys. Rev. A 63, 053806 (2001)

    ADS  Google Scholar 

  23. G.S. Agarwal, T.N. Dey, S. Menon, Phys. Rev. A 64, 053809 (2001)

    ADS  Google Scholar 

  24. E.E. Mikhailov, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, J. Opt. Soc. Am. B 21, 425 (2004)

    ADS  Google Scholar 

  25. Q. Sun, Y.V. Rostovtsev, J.P. Dowling, M.O. Scully, M.S. Zubairy, Phys. Rev. A 72, 031802 (2005)

    ADS  Google Scholar 

  26. A.B. Matsko, Y.V. Rostovtsev, M. Fleischhauer, M.O. Scully, Phys. Rev. Lett. 86, 2006 (2001)

    ADS  Google Scholar 

  27. Y.V. Rostovtsev, Z.-E. Sariyanni, M.O. Scully, Phys. Rev. Lett. 97, 113001 (2006)

    ADS  Google Scholar 

  28. D. Sun, Z.-E. Sariyanni, S. Das, Y.V. Rostovtsev, Phys. Rev. A 83, 063815 (2011)

    ADS  Google Scholar 

  29. Z.-E. Sariyanni, D. Sun, Y.V. Rostovtsev, Opt. Lett. 39, 766–768 (2014)

    ADS  Google Scholar 

  30. V.A. Sautenkov, Y.V. Rostovtsev, M.O. Scully, Phys. Rev. A 72, 065801 (2005)

    ADS  Google Scholar 

  31. O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)

    ADS  Google Scholar 

  32. M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, Phys. Rev. A 75, 053807 (2007)

    ADS  Google Scholar 

  33. P.K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y.V. Rostovtsev, X. Zhang, Phys. Rev. Lett. 116, 229903 (2016)

  34. V. Shalaev, Nat. Photon. 1, 41 (2007) (Science 316, 430, 2007)

  35. Y. Liu, X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Google Scholar 

  36. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. 11, 917 (2012)

    ADS  Google Scholar 

  37. A. Poddubny, I. Iprsh, P. Belov, Y. Kivshar, Nat. Photon. 7, 948 (2013)

    ADS  Google Scholar 

  38. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Y. Huang, O. Scully, Science 316, 265 (2007)

  39. T.A. Collins, S.A. Malinovskaya, Opt. Lett. 37, 2298 (2012)

    ADS  Google Scholar 

  40. S.A. Malinovskaya, Opt. Lett. 33, 2245–2247 (2008)

    ADS  Google Scholar 

  41. E. Pachniak, S.A. Malinovskaya, Preprint arXiv:1902.00584 [quant-ph] (2019)

  42. Z. Brankovic, Y. Rostovtsev, Sci. Rep. 10, 1–10 (2020)

    Google Scholar 

  43. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    ADS  Google Scholar 

  44. N. Yu, F. Capasso, Nat. Mater. 13, 139 (2014)

    ADS  Google Scholar 

  45. L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Prog. Quantum Electron. 40, 1 (2015)

    Google Scholar 

  46. T-Suzuki, H., Chen, W., Landig, R., Simon, J., & Vuletic, V. Science 333, 1266 (2011)

  47. M. Mucke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C.J. Villas-Boas, G. Rempe, Nature 465, 755 (2010)

    ADS  Google Scholar 

  48. V.A. Sautenkov, Y.V. Rostovtsev, H. Chen, P. Hsu, S.G. Aggrawal, M.O. Scully, Phys. Rev. Lett. 94, 233601 (2005)

    ADS  Google Scholar 

  49. J.B. Khurgin, Nat. Nano. 10, 2 (2015)

    Google Scholar 

  50. N.T. Fofang, N.K. Grady, G. Fan, A.O. Govorov, J.N. Halas, Nanoletters 11, 1556 (2011)

    ADS  Google Scholar 

  51. N.T. Fofang, T.H. Park, O. Neumann, N.A. Mirin, P. Nordlander, N.J. Halas, Nanoletters 8, 3481 (2008)

    ADS  Google Scholar 

  52. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P.V. Dorpe, Nordlander, P., & Maier, S.A., Nanoletters 9, 1663 (2009)

  53. S. Biswas, J. Duan, D. Nepal, P. Park, Pachter, R., & Vaia, R.A., Nanoletters 13, 6287 (2013)

  54. A. Cacciola, O.D. Stefano, R. Stassi, R. Saija, S. Savasta, ACS Nano 8, 11483 (2014)

    Google Scholar 

  55. Z. Zhang, A.O. Govorov, Phys. Rev. B 84, 081405(R) (2011)

    ADS  Google Scholar 

  56. W. Zhang, A.O. Govorov, G.W. Bryant, Phys. Rev. Lett. 97, 146804 (2006)

    ADS  Google Scholar 

  57. E.H. Hwang, R. Sensarma, S.D. Sarma, Phys. Rev. B. 82, 195406 (2010)

    ADS  Google Scholar 

  58. K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 106, 046401 (2011)

    ADS  Google Scholar 

  59. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P.M. Ajayan, F.H.L. Koppens, P. Nordlander, N.J. Halas, ACS Nano 11, 10222 (2012)

    Google Scholar 

  60. J. Shang, T. Yu, J. Lin, G.G. Gurzadyan, ACS Nano 5, 3278 (2011)

    Google Scholar 

  61. H. Yan, T. Low, F. Guinea, Xia, F., & Avouris, P., Nanoletters 14, 4581 (2014)

  62. P.N. Romanets, & F.T. Vasko, Phys. Rev. B 81, 241411 R (2010)

  63. D.E. Reiter, T. Kuhn, M. Glass, V.M. Axt, J. Phys. Condens. Matter 26, 423203 (2014)

    ADS  Google Scholar 

  64. D.E. Reiter, https://arxiv.org/pdf/1702.02784.pdf

  65. M. Ohtsu, Nanophotonics. 1, 83–97 (2012)

    ADS  Google Scholar 

  66. T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122, 024715 (2005)

    ADS  Google Scholar 

  67. T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55–57 (2008)

  68. S. Karna, M. Mahat, T.Y. Choi, R. Shimada, Z. Wang, A. Neogi, Sci. Rep. 6, 36898 (2016)

    ADS  Google Scholar 

  69. R.K. Murawski, Y.V. Rostovtsev , Z.E. Sariyanni, V.A. Sautenkov, S. Backus, D. Raymondson, H.C. Kapteyn, M.M. Murnane, M.O. Scully, Phys. Rev. A 77, 023403 (2008)

  70. D. Ma, Y.V. Rostovtsev, J. Raman Spectrosc. 44, 1259–1262 (2013). https://doi.org/10.1002/jrs.4353

    Article  ADS  Google Scholar 

  71. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., New York, 1981)

    Google Scholar 

  72. S.S. Dhayal, G. Sapkota, U. Philipose, Y. Rostovtsev, J. Mod. Opt. 60, 73 (2013)

  73. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley, New York, 1988)

    Google Scholar 

  74. M. Schubert, Phys. Rev. B 53, 4265 (1996)

    ADS  Google Scholar 

  75. M. Titze, B. Li, X. Zhang, P.M. Ajayan, H. Li, Phys. Rev. Mater. 2, 054001 (2018)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Gary N Lim for helping the experimental part, Dr. Ryoko Shimada for TEM images of rGO and Ag-rGO, and Suman Dhayal, Pooja Singh, Goran Branković, Zorica Branković, Konstantin Dorfman, Norbert Kroo, Marlan Scully, Sanjay Karna, and Francis D’Souza for fruitful discussions, and we also gratefully acknowledge the support for this research from the Welch Foundation, the US Department of Energy, the University of North Texas Global Venture Fund, and from the College of Science Collaborator’s Seed Grant at the University of North Texas,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Rostovtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazzezi, M., Pudel, Y., Mahat, M. et al. Observation of plasmonically induced transparency by the pump-probe technique. Eur. Phys. J. Spec. Top. 230, 951–962 (2021). https://doi.org/10.1140/epjs/s11734-021-00076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00076-2

Navigation