Skip to main content
Log in

A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina \((\mathrm{Al}_{2}\mathrm{O}_{3})\), copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \hat{u} \) :

Velocity along \( \hat{x} \)-axis

\( \gamma , C \) :

Eyring–Powell fluid parameters

\( q_r \) :

Radiative heat flux

\( \hat{v} \) :

Velocity along \( \hat{y} \)-axis

M :

Hartmann number

u :

Dimensionless velocity

\( \hat{t} \) :

Time

R :

Reynold’s number

\( \hat{p} \) :

Dimensional pressure

t :

Dimensionless time

k :

Permeability of porous walls

p :

Dimensionless pressure

\( \phi \) :

Nanoparticle volume fraction

\( \kappa \) :

Thermal conductivity

Gr:

Grashof number

\( \sigma \) :

Electrical conductivity

\( \upsilon \) :

Kinematic viscosity

Pr:

Prandtl number

\( \mu \) :

Dynamic viscosity

\( \hat{\tau }_{xy} \) :

Stress tensor

L :

Slip parameter

g :

Acceleration due to gravity

\( \hat{T} \) :

Temperature

Ec:

Eckert number

\( \theta \) :

Dimensionless temperature

\( k_1 \) :

Non-Newtonian parameter

\( \beta \) :

Thermal expansion coefficient

\( c_p \) :

Specific heat

a :

Slip coefficient

\( \hat{\sigma } \) :

Stefan–Boltzmann constant

\( B_0 \) :

Magnetic field strength

\( \rho \) :

Density

\( \omega \) :

Frequency

\(\hat{k}\) :

Rosseland mean absorption coefficient

\( v_0 \) :

Suction/injection velocity

H :

Frequency parameter

Rd:

Radiation parameter

nf:

Nanofluid

f :

Base fluid

References

  1. M.Y. Abou-zeid, S.S. El-zahrani, H.M. Mansour, J. Nucl. Part. Phys. 4(3), 100–115 (2014)

    Google Scholar 

  2. J.U. Abubakar, A.D. Adeoye, J. Taibah Univ. Sci. 14(1), 77–86 (2020)

    Article  Google Scholar 

  3. S.O. Adesanya, J.A. Falade, O.D. Makinde, Sci. Bull. Politeh. Buchar. Ser. D 77(1), 25–36 (2015)

    Google Scholar 

  4. A. Barletta, M. Celli, Int. J. Heat Mass Transf. 51(25–26), 6110–6117 (2008)

    Article  Google Scholar 

  5. P. Bitla, T.K.V. Iyengar, Nonlinear Anal. Model Control 18(4), 399–411 (2013)

    Article  MathSciNet  Google Scholar 

  6. W. Chang, G. Pu-Zhen, T. Si-Chao, X. Chao, Prog. Nucl. Energy 58, 45–51 (2012)

    Article  Google Scholar 

  7. S.U.S. Choi, Am. Soc. Mech. Eng. Fluids Eng. Div. FED 231, 99–105 (1995)

    Google Scholar 

  8. U.N. Das, J. Appl. Math. Mech. 49(5), 257–265 (1969)

    Google Scholar 

  9. N. Datta, D.C. Dalal, S.K. Mishra, Int. J. Heat Mass Transf. 36(7), 1783–1788 (1993)

    Article  Google Scholar 

  10. M.R. Eid, A.F. Al-Hossainy, MSh Zoromba, Commun. Theor. Phys. 71(12), 1425 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.A. Falade, J.C. Ukaegbu, A.C. Egere, S.O. Adesanya, Alex. Eng. J. 56(1), 147–152 (2017)

    Article  Google Scholar 

  12. F.G. Fowkes, G.D. Lowe, A. Rumley, S.E. Lennie, F.B. Smith, P.T. Donnan, Eur. Heart J. 14(5), 597–601 (1993)

    Article  Google Scholar 

  13. G.Z. Gershuni, E.M. Zhukhovitskii, Sov. Phys. JETP 34(7), 670–674 (1958)

    Google Scholar 

  14. M. Guria, Int. J. Appl. Mech. Eng. 21(2), 341–358 (2016)

    Article  Google Scholar 

  15. M. Hatami, J. Hatami, D.D. Ganji, Comput. Methods Progr. Biomed. 113(2), 632–641 (2014)

    Article  Google Scholar 

  16. T. Hayat, S.A. Khan, M.I. Khan, A. Alsaedi, Phys. Scr. 94(8), 085001 (2019)

    Article  ADS  Google Scholar 

  17. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Int. J. Heat Mass Transf. 102, 723–732 (2016)

    Article  Google Scholar 

  18. S.B. Islami, B. Dastvareh, R. Gharraei, Int. J. Heat Mass Transf. 78, 917–929 (2014)

    Article  Google Scholar 

  19. S. Jafarzadeh, A.N. Sadr, E. Kaffash, S. Goudarzi, E. Golab, A. Karimipour, Comput. Methods Progr. Biomed. 195, 105545 (2020)

    Article  Google Scholar 

  20. B. Kumar, S. Srinivas, J. Appl. Comput. Mech. 6(2), 259–270 (2020)

    Google Scholar 

  21. C.K. Kumar, S. Srinivas, A.S. Reddy, J. Mech. 36(4), 535–549 (2020)

    Article  Google Scholar 

  22. P.B. Kumar, S. Srinivas, Mater. Today Proc. 9, 320–332 (2019)

    Article  Google Scholar 

  23. I.A. Mirza, M. Abdulhameed, S. Shafie, Appl. Math. Mech. 38(3), 379–392 (2017)

    Article  MathSciNet  Google Scholar 

  24. M.M. Molla, M.C. Paul, Med. Eng. Phys. 34(8), 1079–1087 (2012)

    Article  Google Scholar 

  25. J.F. Osterle, F.J. Young, J. Fluid Mech. 11(4), 512–518 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Poots, Int. J. Heat Mass Transf. 3(1), 1–25 (1961)

    Article  Google Scholar 

  27. O. Prakash, S.P. Singh, D. Kumar, Y.K. Dwivedi, AIP Adv. 1(4), 042128 (2011)

    Article  ADS  Google Scholar 

  28. G. Radhakrishnamacharya, M.K. Maiti, Int. J. Heat Mass Transf. 20, 171–173 (1977)

    Article  Google Scholar 

  29. R.K. Selvi, R. Muthuraj, Ain Shams Eng. J. 9(4), 2503–2516 (2018)

    Article  Google Scholar 

  30. H.M. Shawky, Heat Mass Transf. 45(10), 1261–1269 (2009)

    Article  ADS  Google Scholar 

  31. M. Sheikholeslami, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  32. G.C. Shit, S. Maiti, M. Roy, J.C. Misra, Math. Comput. Simul. 166, 432–450 (2019)

    Article  Google Scholar 

  33. V.M. Soundalgekar, D.D. Haldavnekar, Acta Mech. 16(1–2), 77–91 (1973)

    Article  Google Scholar 

  34. S. Srinivas, C.K. Kumar, A.S. Reddy, Nonlinear Anal. Model Control 23(2), 213–233 (2018)

    Article  MathSciNet  Google Scholar 

  35. S. Srinivas, T. Malathy, A.S. Reddy, J. King Saud Univ. Sci. 28(2), 213–221 (2016)

    Google Scholar 

  36. S. Srinivas, R. Muthuraj, Commun. Nonlinear Sci. Numer. Simul. 15(8), 2098–2108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. G. Sucharitha, K. Vajravelu, P. Lakshminarayana, J. Nanofluids 8(7), 1373–1384 (2019)

    Article  Google Scholar 

  38. G.B. Thurston, N.M. Henderson, M. Jeng. Viscoelastic properties of blood on analoges. in: Advances in Hemodynamics and hemorheology, ed. by T.V. How (Jai Press, Inc, 2004)

  39. M. VeeraKrishna, G. Subba Reddy, A.J. Chamkha, Phys. Fluids 30(2), 023106 (2018)

    Article  ADS  Google Scholar 

  40. A. Vijayalakshmi, S. Srinivas, J. Mech. 33(2), 213–224 (2017)

    Article  Google Scholar 

  41. C.Y. Wang, J. Biomech. Eng. 130(2), 11–13 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this paper.

Corresponding author

Correspondence to Srinivas Suripeddi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.B., Suripeddi, S. A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel. Eur. Phys. J. Spec. Top. 230, 1465–1474 (2021). https://doi.org/10.1140/epjs/s11734-021-00057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00057-5

Navigation