Skip to main content

Advertisement

Log in

Thermo-solutal Robin conditions significance in thermally radiative nanofluid under stratification and magnetohydrodynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Nanoliquids via diffusing less quantity of nanometer-sized elements in base liquids can extraordinarily upsurge heat transport along with thermal functioning of heat exchanging systems. Such liquids are utilized in various fields for illustration liquid fuel, energy storage and absorption, heat-mass transport and lubricating materials. Thus, we aimed to formulate and scrutinize the nanoliquid hydromagnetic flow by permeable convected cylinder. Rheological expressions of Jeffrey liquid are considered to develop flow formulation. Buongiorno model featuring thermophoresis and Brownian diffusions is under consideration for modeling and analysis. Nonlinear version of thermo-solutal buoyancy forces is also a part of this study. Robin conditions, dual stratification and radiation effects are accounted to capture the analyze the heat transport characteristics. Homotopy concept yields convergent solutions of modeled non-linear differential systems. In addition, dimensionless factors are elaborated in detail through graphical and tabular results. We examined reduction in liquid temperature along with concentration subjected to higher thermal/concentration stratification factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Ghigo, P.Y. Lagree, J.M. Fullana, A time-dependent non-Newtonian extension of a 1d blood flow model. J. Nonnewton. Fluid Mech. 253, 36–49 (2018)

    MathSciNet  Google Scholar 

  2. M. Sankar, M. Venkatachalappa, I.S. Shivakumara, Effect of magnetic field on natural convection in a vertical cylindrical annulus. Int. J. Eng. Sci. 44(20), 1556–1570 (2006)

    MathSciNet  MATH  Google Scholar 

  3. M. Sankar, M. Venkatachalappa, I.S. Shivakumara, Effect of magnetic field on natural convection in a vertical cylindrical annulus. Int. J. Eng. Sci. 44(20), 1556–1570 (2006)

    MathSciNet  MATH  Google Scholar 

  4. M. Sankar, Youngyong Park, J.M. Lopez, Younghae Do, Numerical study of natural convection in a vertical porous annulus with discrete heating. Int. J. Heat Mass Transf. 54(7–8), 1493–1505 (2011)

    MATH  Google Scholar 

  5. M. Sankar, Junpyo Park, Dongseok Kim, Younghae Do, Numerical study of natural convection in a vertical porous annulus with an internal heat source: effect of discrete heating. Numer. Heat Transf. Part A: Appl. 63(9), 687–712 (2013)

    ADS  Google Scholar 

  6. M. Sankar, Younghae Do, Soorok Ryu, Bongsoo Jang, Cooling of heat sources by natural convection heat transfer in a vertical annulus. Numerical Heat Transfer, Part A: Applications 68(8), 847–869 (2015)

    ADS  Google Scholar 

  7. T. Hayat, S. Qayyum, M. Waqas, A. Alsaedi, Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J. Mol. Liq. 224, 801–810 (2016)

    Google Scholar 

  8. T. Hayat, S. Qayyum, A. Alsaedi, M. Waqas, Simultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surface. J. Mol. Liq. 224, 811–817 (2016)

    Google Scholar 

  9. T. Hayat, M. Zubair, M. Waqas, A. Alsaedi, M. Ayub, On doubly stratified chemically reactive flow of Powell–Eyring liquid subject to non-Fourier heat flux theory. Results Phys. 7, 99–106 (2017)

    ADS  Google Scholar 

  10. M. Khan, M. Irfan, W.A. Khan, Impact of nonlinear thermal radiation and gyrotactic microorganisms on the magneto-Burgers nanofluid. Int. J. Mech. Sci. 130, 375–382 (2017)

    Google Scholar 

  11. S. Sheri, M.D. Shamshuddin, Finite element analysis on transient magnetohydrodynamic (MHD) free convective chemically reacting micropolar fluid flow past a vertical porous plate with Hall current and viscous dissipation. Propul. Power Res. 7, 353–365 (2018)

    Google Scholar 

  12. G. Kumaran, R. Sivaraj, A. Subramanyam Reddy, B. Rushi Kumar, V. Ramachandr, Prasad hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur. Phys. J. Spec. Top. 228, 2647–2659 (2019)

    Google Scholar 

  13. M.I. Khan, F. Alzahrani, A. Hobiny, Z. Ali, Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy. Journal of Materials Research and Technology 9, 9951–9964 (2020)

    Google Scholar 

  14. M. Waqas, A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J. Magn. Magn. Mater. 493, 165646 (2020)

    Google Scholar 

  15. H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, Ali J. Chamkha, H.M. Baskonus, A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole. AIMS Math. 5(5), 4197–4219 (2020)

    MathSciNet  Google Scholar 

  16. U. Khan, A. Zaib, D. Baleanu, M. Sheikholeslami, A. Wakif, Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction. Heliyon 6, e04565 (2020)

    Google Scholar 

  17. M. Aneja, A. Chandra, S. Sharma, Natural convection in a partially heated porous cavity to Casson fluid. Int. Commun. Heat Mass Transf. 114, 104555 (2020)

    Google Scholar 

  18. H. Thameem Basha, R. Sivaraj, V. Ramachandra Prasad, O. Anwar Beg, Entropy generation of tangent hyperbolic nanofluid flow over a circular cylinder in the presence of nonlinear Boussinesq approximation: a non-similar solution. J. Therm. Anal. Calorim. 143, 2273–2289 (2021)

    Google Scholar 

  19. P.V.S. Narayana, D.H. Babu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J. Taiwan Inst. Chem. Eng. 59, 18–25 (2016)

    Google Scholar 

  20. T. Hayat, G. Bashir, M. Waqas, A. Alsaedi, MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating. Results Phys. 6, 817–823 (2016)

    ADS  Google Scholar 

  21. O. Ojjela, A. Raju, P.K. Kambhatla, Influence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel plates. J. Mol. Liq. 232, 195–206 (2017)

    Google Scholar 

  22. K. Ramesh, Effects of viscous dissipation and Joule heating on the Couette and Poiseuille flows of a Jeffrey fluid with slip boundary conditions. Propul. Power Res. 7, 329–341 (2018)

    Google Scholar 

  23. S. Yasmeen, S. Asghar, H.J. Anjum, T. Ehsan, Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun. Nonlinear Sci. Numer. Simul. 76, 51–65 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  24. M. Waqas, W.A. Khan, Z. Asghar, An improved double diffusion analysis of non-Newtonian chemically reactive fluid in frames of variables properties. Int. Commun. Heat Mass Transf. 115, 104524 (2020)

    Google Scholar 

  25. R. Ponalagusamy, R. Manchi, Particle-fluid two phase modeling of electro-magneto hydrodynamic pulsatile flow of Jeffrey fluid in a constricted tube under periodic body acceleration. Eur. J. Mech.-B/Fluids 81, 76–92 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  26. S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, Amsterdam, 2007)

    Google Scholar 

  27. H. Tyagi, Radiative and Combustion Properties of Nanoparticle-Laden Liquids, Arizona State University (2008)

  28. M.A. Ismael, T. Armaghani, A.J. Chamkha, Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J. Taiwan Inst. Chem. Eng. 59, 138–151 (2016)

    Google Scholar 

  29. S.M.H. Zadeh, M. Sabour, S. Sazgara, M. Ghalambaz, Free convection flow and heat transfer of nanofluids in a cavity with conjugate solid triangular blocks: employing Buongiorno’s mathematical model. Physica A 538, 122826 (2020)

    MathSciNet  Google Scholar 

  30. T. Hayat, G. Bashir, M. Waqas, A. Alsaedi, MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J. Mol. Liq. 223, 836–844 (2016)

    Google Scholar 

  31. F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng. Sci. Technol. Int. J. 20(4), 1324–1333 (2017)

    Google Scholar 

  32. M. Waqas, T. Hayat, A. Alsaedi, A theoretical analysis of SWCNT-MWCNT and H2O nanofluids considering Darcy–Forchheimer relation. Appl. Nanosci. 9, 1183–1191 (2018)

    ADS  Google Scholar 

  33. M. Sheikholeslami, Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  34. M. Waqas, S. Jabeen, T. Hayat, M.I. Khan, A. Alsaedi, Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J. Magn. Magn. Mater. 485, 197–204 (2019)

    ADS  Google Scholar 

  35. M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  36. M. Sheikholeslami, H. Keramati, A. Shafee, Z. Li, O.A. Alawad, I. Tlili, Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Physica A 523, 87–104 (2019)

    ADS  MathSciNet  Google Scholar 

  37. M. Sheikholeslami, M. Jafaryar, Ahmad Shafee, Z. Li, Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Physica A 523, 544–556 (2019)

    ADS  Google Scholar 

  38. M. Waqas, M.I. Khan, T. Hayat, M.M. Gulzar, A. Alsaedi, Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions. Chaos Solit. Fract. 130, 109415 (2020)

    MathSciNet  Google Scholar 

  39. M. Ibrahim, M.I. Khan, Mathematical modeling and analysis of SWCNT-Water and MWCNT-Water flow over a stretchable sheet. Comput. Methods Programs Biomed. 187, 105222 (2020)

    Google Scholar 

  40. U. Khan, A. Zaib, F. Mebarek-Oudina, Mixed Convective Magneto Flow of SiO2-MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab. J. Sci. Eng. 45, 9061–9073 (2020)

    Google Scholar 

  41. S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09662-3

    Article  Google Scholar 

  42. W.A. Khan, M. Ali, M. Shahzad, F. Sultan, M. Irfan, Z. Asghar, A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface. Appl. Nanosci. 10, 3235–3244 (2020)

    Google Scholar 

  43. J. Raza, F. Mebarek-Oudina, P. Ram, S. Sharma, MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. Defect Diffus. Forum 401, 92–106 (2020)

    Google Scholar 

  44. M. Farhan, Z. Omar, F. Mebarek-Oudina, J. Raza, Z. Shah, R.V. Choudhari, O.D. Makinde, Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator. Comput. Math. Model. 31, 116–132 (2020)

    MathSciNet  MATH  Google Scholar 

  45. W.A. Khan, M. Waqas, S. Kadry, Z. Asghar, S.Z. Abbas, M. Irfan, On the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditions. Comput. Methods Programs Biomed. 190, 105347 (2020)

    Google Scholar 

  46. M.I. Khan, S. Kadry, Y.M. Chu, M. Waqas, Modeling and numerical analysis of nanoliquid (titanium oxide, Graphene oxide) flow viscous fluid with second order velocity slip and entropy generation. Chinese Journal of Chemical Engineering (2020). https://doi.org/10.1016/j.cjche.2020.08.005

  47. S.J. Liao, Homotopic Analysis Method in Nonlinear Differential Equations (Springer, Heidelberg, 2012)

    Google Scholar 

  48. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption. Eur. Phys. J. Plus 131, 253 (2016)

    Google Scholar 

  49. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet. J. Mol. Liq. 223, 853–860 (2016)

    Google Scholar 

  50. W.A. Khan, M. Irfan, M. Khan, An improved heat conduction and mass diffusion models for rotating flow of an Oldroyd-B fluid. Results Phys. 7, 3583–3589 (2017)

    ADS  Google Scholar 

  51. M. Irfan, M. Khan, W.A. Khan, M. Ayaz, Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys. Lett. A 382, 1992–2002 (2018)

    ADS  Google Scholar 

  52. M. Waqas, Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder. Int. J. Numer. Methods Heat Fluid Flow 30, 2193–2205 (2019)

    Google Scholar 

  53. M. Waqas, M.M. Gulzar, A.S. Dogonchi, M.A. Javed, W.A. Khan, Darcy–Forchheimer stratified flow of viscoelastic nanofluid subjected to convective conditions. Appl. Nanosci. 9, 2031–2037 (2019)

    ADS  Google Scholar 

  54. M. Irfan, M. Khan, W. A. Khan, M. Alghamdi, M. Z. Ullah, Influence of thermal-solutal stratifications and thermal aspects of non-linear radiation in stagnation point Oldroyd-B nanofluid flow. Int. Commun. Heat Mass Transf. 116, 104636 (2020)

  55. T. Abbas, S. Rehman, R.A. Shah, M. Idrees, M. Qayyum, Analysis of MHD Carreau fluid flow over a stretching permeable sheet with variable viscosity and thermal conductivity. Physica A 555, 124225 (2020)

    MathSciNet  Google Scholar 

  56. T. Fang, J. Zhang, S. Yao, Slip MHD viscous flow over a stretching sheet-An exact solution. Commun. Nonlinear Sci. Numer. Simul. 14, 3731–3737 (2009)

    ADS  Google Scholar 

  57. M. Farooq, N. Gull, A. Alsaedi, T. Hayat, MHD flow of a Jeffrey fluid with Newtonian heating. J. Mech. 31, 319–329 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Asghar, Z. & Khan, W.A. Thermo-solutal Robin conditions significance in thermally radiative nanofluid under stratification and magnetohydrodynamics. Eur. Phys. J. Spec. Top. 230, 1307–1316 (2021). https://doi.org/10.1140/epjs/s11734-021-00044-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00044-w

Keywords

Navigation