Skip to main content
Log in

Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian moment and thermophoresis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper scrutinizes the magnetohydrodynamic-free convection flow along higher part of the paraboloid of revolution by curbing the assets of Brownian moment and thermophoresis. The governing equations leading to boundary restrictions of the model are compressed into ODEs by employing proper transformations. To resolve these equations, we operated shooting approach. The influence of all the emerging sundry flow controlled variables on convergences is contemplated graphically for the momentum, thermal and species fields. Also, wall friction, Nusselt and Sherwood numbers of relevant comprising flow factors are perceived through tables. Simultaneous results are displayed in two cases. It is found that the magnetic field signifies additional conflicting force to fluid motion and dissipation impacts to accelerate the temperature. Non-Newtonian flow is highly influenced by Brownian moment when compared to Newtonian flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. in Proceedings of the ASME International mechanical engineering congress and exposition, san francisco, calif, USA 66, 99–105 (1995)

  2. B. Metzner, R.D. Vaughn, G.L. Houghton, Heat transfer to non-Newtonian fluids. AIChE J. 3(1), 92–100 (1957)

    Article  Google Scholar 

  3. Acrivos, M.J. Shah, E.E. Petersen, Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surfaces. AIChE J. 6, 312–7 (1960)

    Article  Google Scholar 

  4. J. Rahimi, D.D. Ganji, M. Khaki, K. Hosseinzadeh, Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alexandria Eng. J. 56, 621–627 (2017)

    Article  Google Scholar 

  5. K.R. Rajagopal, T.N. Na, A.S. Guptha, Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta. 23, 213–215 (1984)

    Article  Google Scholar 

  6. G. Radhakrishnamacharya, Flow of micropolar fluid through a constricted channel. Int. J. Eng. Sci. 15, 719–725 (1977)

    Article  Google Scholar 

  7. F.Mônica Naccache, Paulo R. Souza Mendes, Heat transfer to non-Newtonian fluids in laminar flow through rectangular ducts. Int. J. Heat Fluid Flow 17(6), 613–620 (1996)

    Article  Google Scholar 

  8. K. Vajravelu, J.R. Cannon, D. Rollins, J. Leto, On solutions of some non-linear differential equations arising in third grade fluid flows. Int. J. Eng. Sci. 40, 1791–1805 (2002)

    Article  MathSciNet  Google Scholar 

  9. M.M. Molla, L.S. Yao, Mixed convection of non-Newtonian fluids along a heated vertical flat plate. Int. J. Heat Mass Transf. 52(13–14), 3266–3271 (2009)

    Article  Google Scholar 

  10. C.H. Chen, Y.L. Hwang, S.J. Hwang, Non-Newtonian fluid flow and heat transfer in microchannel. Appl. Mech. Mater. 462, 275–277 (2013)

    Google Scholar 

  11. Abhijit Guha, Kaustav Pradhan, Natural convection of non-Newtonian power-law fluids on a horizontal plate. Int. J. of Heat Mass Transf. 70, 930–938 (2014)

    Article  Google Scholar 

  12. M. Nawaz, R. Naz, M. Awais, Magnetohydrodynamic axisymmetric flow of Casson fluid with variable thermal conductivity and free stream. Alexandria Eng. J. 57, 2043–2050 (2018)

    Article  Google Scholar 

  13. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J.Thermal Sci. 49(2), 243–247 (2010)

    Article  Google Scholar 

  14. W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477 (2010)

    Article  Google Scholar 

  15. N. Sandeep, C. Sulochana, B.Rushi Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface. Eng Sci. Technol. 19, 227–240 (2016)

    Google Scholar 

  16. I. Tlili, N.N. Hamadneh, W.A. Khan, Thermodynamic analysis of MHD heat and mass transfer of nanofluids past a static Wedge with Navier slip and convective boundary conditions. Arab. J. Sci. Eng. 44, 1255–1267 (2019)

    Article  Google Scholar 

  17. S.S. Ghadikolaei, K. Hosseinzadeh, D.D. Ganji, B. Jafari, Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Thermal Eng. 12, 176–187 (2018)

    Article  Google Scholar 

  18. M.G. Reddy, N. Sandeep, Computational modelling and analysis of heat and mass transfer in MHD flow past the upper part of a paraboloid of revolution. The European Physical Journal Plus 132. Article number 222 (2017)

  19. A. Malvandi, D.D. Ganji, Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. Euro. J. Mech.-B/Fluids. 52, 169–84 (2015)

    Article  ADS  Google Scholar 

  20. P.M. Krishna, N. Sandeep, R.P. Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects. Euro. Phys. J Plus. 132 (2017). https://doi.org/10.1140/epjp/i2017-11469-9

  21. M.M. Rashidi, S. Abelman, N.Freidooni Mehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–25 (2013)

    Article  Google Scholar 

  22. A. Mushtaq, M. Mustafa, T. Hayat, A. Alsaedi, Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J. Taiwan Inst. Chem. Eng. 45, 1176–83 (2014)

    Article  Google Scholar 

  23. D. Yadav, R. Bhargava, G.S. Agrawal, Thermal instability in a nanofluid layer with a vertical magnetic field. J. Eng. Math. 80, 147–64 (2013)

    Article  MathSciNet  Google Scholar 

  24. A. Malvandi, D.D. Ganji, Effects of nanoparticle migration on hydromagnetic mixed convection of alumina/water nanofluid in vertical channels with asymmetric heating. Physica E 66, 181–96 (2015)

    Article  ADS  Google Scholar 

  25. S. Nadeem, R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 121–6 (2014)

    Article  Google Scholar 

  26. L. Yang, K. Du, A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Thermal Anal Calorimetry. (2019). https://doi.org/10.1007/s10973-019-08987-y

  27. D.D. Ganji, A. Malvandi, Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field. Powder Technol. 263, 50–57 (2014)

    Article  Google Scholar 

  28. M. Sheikholeslami, S. Saleem, A. Shafee, Z. Li, T. Hayat, A. Alsaedi, M.Ijaz Khan, Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput. Methods Appl. Mech. Eng. 349, 839–858 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. N. Sandeep, B.Rushi Kumar, M.S.Jagadeesh Kumar, A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet. J. Mol. Liquids. 212, 585–591 (2015)

    Article  Google Scholar 

  30. B. Souayeh, M.G. Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji, I.M. Alarifi, Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liquids. 284, 163–174 (2019)

    Article  Google Scholar 

  31. Z. Cao, J. Zhao, Z. Wang, F. Liu, L. Zheng, MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate. J. Mol. Liquids. 222, 1121–1127 (2016)

    Article  Google Scholar 

  32. J.V.Ramana Reddy, V. Sugunamma, N. Sandeep, Simultaneous impacts of Joule heating and variable heat source/sink on MHD 3D flow of Carreau-nanoliquids with temperature dependent viscosity. Nonlinear Eng. 8, 356–367 (2019)

    Article  ADS  Google Scholar 

  33. B. Gebhart, Effects of viscous dissipation in natural convection. J. Fluid Mech. 14, 225–232 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Saleem, S. Nadeem, M.M. Rashidi, C.S.K. Raju, An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst. Technol. 25, 683–689 (2019)

    Article  Google Scholar 

  35. A.O. Ajibade, T.da M. Kabir, Viscous dissipation effect on steady natural convection couette flow of heat generating fluid in a vertical channel. J. Adv. Math. Comput. Sci. 30, 1–16 (2018)

    Article  Google Scholar 

  36. M. Imtiaz, T. Hayat, A. Alsaedi, Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Adv. Powder Technol. 27(5), 2214–2222 (2016)

    Article  Google Scholar 

  37. I.L. Animasaun, 47nm alumina-water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alexandria Eng. J. 55, 2375–2389 (2016)

    Article  Google Scholar 

  38. I.L. Animasaun, N. Sandeep, Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Technol. 301, 858–867 (2016)

    Article  Google Scholar 

  39. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  40. M. Duriraj, S. Ramachandran, R.M. Mehdi, Heat generating/absorbing and chemically reacting Casson fluid flow over a vertical cone and flate plate saturated with non-Darcy porous medium. Int. J. Numer. methods Heat Fluid Flow 27, 156–173 (2017)

    Article  Google Scholar 

  41. R. Sivaraj, A.J. Benazir, S. Srinivas, A.J. Chamkha, Investigation of cross-diffusion effects on Casson fluid flow in existence of variable fluid properties. Euro. Phys. J. 228, 35–53 (2019). https://doi.org/10.1140/epjst/e2019-800187-3

    Article  Google Scholar 

  42. D. Mythili, R. Sivaraj, Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate. J. Mol. Liquids 216, 466–475 (2016). https://doi.org/10.1016/j.molliq.2016.01.072

    Article  Google Scholar 

  43. A.J. Benazir, R. Sivaraj, M.M. Rashidi, Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate. J. Heat Transf. 138, 1–6 (2016). https://doi.org/10.1115/1.4033971

    Article  Google Scholar 

  44. R. Sivaraj, A.J. Benazir, Unsteady MHD mixed convective oscillatory flow of Casson fluid in a porous asymmetric wavy channel. Special Topics Rev. Porous Med. 6, 267–281 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sandeep.

Ethics declarations

Competing interests

The author(s) declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrat, S.P., Reddy, M.G. & Sandeep, N. Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian moment and thermophoresis. Eur. Phys. J. Spec. Top. 230, 1273–1281 (2021). https://doi.org/10.1140/epjs/s11734-021-00043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00043-x

Navigation