Skip to main content
Log in

Buoyant convective flow of different hybrid nanoliquids in a non-uniformly heated annulus

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A sealed annular geometry containing nanoliquids with differently heated boundaries aptly describes the geometrical structure of many important cooling applications. The present study reports the numerical investigation on the effect of axially varying temperature in the form of sinusoidal thermal profiles along the side walls of an annular enclosure containing different hybrid nanoliquids with insulated horizontal boundaries. An implicit FDM based approach is adopted to solve the transient and steady-state model equations and numerical simulations are presented to describe the qualitative flow behavior as well as the quantitative thermal transport rates. The prime objective of the analysis is to enhance the buoyant flow circulation strength as well as the associated thermal dissipation rates and is achieved by identifying a suitable combination of nanoparticle along with a proper choice of geometrical parameters. Numerical predictions revealed the buoyant motion and thermal dissipation rate could be effectively controlled by a proper selection of phase deviation. Further, the appropriate combination of nanoparticles is another crucial parameter in enhancing the thermal transport in the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. de Vahl Davis, R.W. Thomas, Phys. Fluids 12(12), 198 (1969)

    Google Scholar 

  2. V. Prasad, F.A. Kulacki, J. Heat Transf. 107(3), 596 (1985)

    Article  Google Scholar 

  3. J.A. Khan, R. Kumar, J. Heat Transf. 111(4), 909 (1989)

    Article  Google Scholar 

  4. S.C. Kakarantzas, I.E. Sarris, N.S. Vlachos, Int. J. Heat Mass Transf. 54(15–16), 3347 (2011)

    Article  Google Scholar 

  5. M. Sankar, S. Kiran, G.K. Ramesh, O.D. Makinde, Defect Diffus. Forum 377, 189 (2017)

    Article  Google Scholar 

  6. S. Kiran, N. Keerthi, M. Sankar, Y. Do, Advances in Fluid Dynamics, vol. 889 (Springer Nature, Singapore, 2020)

    Google Scholar 

  7. S.U.S. Choi, Developments and applications of non-Newtonian flows. FED-vol.231/MD-vol. 66, pp. 99–105 (1995)

  8. O. Abouali, A. Falahatpisheh, Heat Mass Transf. 46(1), 15 (2009)

    Article  ADS  Google Scholar 

  9. H.K. Dawood, H.A. Mohammed, N.A.C. Sidik, K.M. Munisamy, M.A. Wahid, Int. Commun. Heat Mass Transf. 62, 45 (2015)

    Article  Google Scholar 

  10. F. Mebarek-Oudina, Heat Transf.-Asian Res. 48(1), 135 (2018)

    Article  Google Scholar 

  11. F. Mebarek-Oudina, Thermophys. Aeromech. 26(3), 325 (2019)

    Article  ADS  Google Scholar 

  12. N. Keerthi, M. Sankar, J. Phys. Conf. Ser. 1597, 012055 (2020)

    Article  Google Scholar 

  13. S. Sureshkumar, M. Muthtamilselvan, Eur. Phys. J. Plus 131, 95 (2016)

    Article  Google Scholar 

  14. S. Sureshkumar, S. Muthukumar, M. Muthtamilselvan, D.H. Doh, G.R. Cho, E. Prem, Eur. Phys. J. Spec. Top. 229, 331–346 (2020)

    Article  Google Scholar 

  15. J. Sarkar, P. Ghosh, A. Adil, Renew. Sustain. Energy Rev. 43, 164 (2015)

  16. H. Babar, H.M. Ali, J. Mol. Liq. 281, 598 (2019)

    Article  Google Scholar 

  17. T.R. Shah, H.M. Ali, Sol. Energy 183, 173 (2019)

    Article  ADS  Google Scholar 

  18. A.J. Chamkha, I.V. Miroshnichenko, M.A. Sheremet, J. Therm. Sci. Eng. Appl. 9(4), 041004 (2017)

    Article  Google Scholar 

  19. H.R. Ashorynejad, Results Phys. 9, 440 (2018)

    Article  ADS  Google Scholar 

  20. M. Hassan, M. Marin, R. Ellahi, S.Z. Alamri, Heat Transf. Res. 49(18), 1837 (2018)

    Article  Google Scholar 

  21. T. Tayebi, A.J. Chamka, Numer. Heat Transf. Part A 70(10), 1141 (2016)

    Article  ADS  Google Scholar 

  22. T. Tayebi, A.J. Chamkha, Comput. Therm. Sci. 9(5), 405 (2017)

    Article  Google Scholar 

  23. M. Ghalambaz, S.A.M. Mehryan, E. Izadpanahi, A.J. Chamkha, D. Wen, J. Therm. Anal. Calorim. 138, 1723 (2019)

    Article  Google Scholar 

  24. B.M. Al-Srayyih, S. Gao, S.H. Hussain, Phys. Fluids 31, 043609 (2019)

    Article  ADS  Google Scholar 

  25. M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Chem. Eng. Process. 125, 56 (2018)

    Article  Google Scholar 

  26. M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, J. Therm. Anal. Calorim. 139, 2321 (2019)

    Article  Google Scholar 

  27. M. Ghalambaz, M.A. Sheremet, S.A.M. Mehryan, F.M. Kashkooli, I. Pop, J. Therm. Anal. Calorim. 135, 1381 (2019)

    Article  Google Scholar 

  28. S.A.M. Mehryan, F.M. Kashkooli, M. Ghalambaz, A.J. Chamkha, Adv. Powder Technol. 28(9), 2295 (2017)

    Article  Google Scholar 

  29. M. Izadi, R. Mohebbi, A.A. Delouei, H. Sajjadi, Int. J. Mech. Sci. 151, 154 (2019)

  30. M. Izadi, N.M. Maleki, I. Pop, S.A.M. Mehryan, Int. J. Numer. Methods Heat Fluid Flow 29(4), 1211 (2019)

    Article  Google Scholar 

  31. M. Izadi, M.A. Sheremet, S.A.M. Mehryan, Chin. J. Phys. 65, 447 (2020)

  32. T.D. Manh, N.D. Nam, G.K. Abdulrahman, R. Moradi, H. Babazadeh, Int. J. Mod. Phys. C 31(2), 2050026 (2019)

    Article  ADS  Google Scholar 

  33. T.D. Manh, I. Tlili, A. Shafee, T. Nguyen-Thoi, H. Hamouda, Phys. A 554(C), 123940 (2020)

    Article  Google Scholar 

  34. R. Du, P. Gokulavani, M. Muthtamilselvan, F. Al-Amri, B. Abdalla, Int. Commun. Heat Mass Transf. 116, 104676 (2020)

    Article  Google Scholar 

  35. Q. Deng, J. Chang, Numer. Heat Transf. Part A 54(5), 507 (2008)

    Article  ADS  Google Scholar 

  36. T. Basak, S. Roy, S.K. Babu, A.R. Balakrishnan, Int. J. Heat Mass Transf. 51(17–18), 4496 (2008)

    Article  Google Scholar 

  37. T. Basak, S. Roy, A. Singh, I. Pop, Int. J. Heat Mass Transf. 52(1–2), 70 (2009)

    Article  Google Scholar 

  38. S. Sivasankaran, M. Bhuvaneswari, Numer. Heat Transf. Part A 63(1), 14 (2013)

    Article  ADS  Google Scholar 

  39. M. Sankar, S. Kiran, Y. Do, Flow and Transport in Subsurface Environment, vol. 251 (Singapore Pte Ltd., Springer Nature, 2018)

    Google Scholar 

  40. I. Mejri, A. Mahmoudi, M.A. Abbassi, A. Omri, Powder Technol. 266, 340 (2014)

    Article  Google Scholar 

  41. S. Sivasankaran, K.L. Pan, Numer. Heat Transf. Part A 65(3), 247 (2014)

    Article  ADS  Google Scholar 

  42. A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, Int. J. Heat Mass Transf. 100, 835 (2016)

    Article  Google Scholar 

  43. A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, B. Chanane, Phys. A 470, 20 (2016)

    Article  Google Scholar 

  44. P. Umadevi, N. Nithyadevi, Int. J. Mech. Sci. 131–132, 712 (2017)

    Article  Google Scholar 

  45. I.R. Ali, A.I. Alsabery, N.A. Bakar, R. Roslan, Symmetry 12, 1977 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Management and R&D Center of Presidency University, Bengaluru, India for the support and encouragement. M. Sankar acknowledges VGST, GoK for the financial assistance under Grant number KSTePS/VGST-KFIST (L1)/2017. We thank the anonymous reviewers for their constructive comments to improve the quality of paper.

Author information

Authors and Affiliations

Authors

Contributions

MS and NKR designed the research problem and developed code. NKR and HAKS performed numerical simulations and plotted graphs. MS and HAKS analyzed the results and wrote the paper.

Corresponding author

Correspondence to M. Sankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, N.K., Swamy, H.A.K. & Sankar, M. Buoyant convective flow of different hybrid nanoliquids in a non-uniformly heated annulus. Eur. Phys. J. Spec. Top. 230, 1213–1225 (2021). https://doi.org/10.1140/epjs/s11734-021-00034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00034-y

Navigation