Skip to main content
Log in

Exploring noise-induced chaos and complexity in a red blood cell system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate dynamical changes and its corresponding phase space complexity in a stochastic red blood cell system. The system is obtained by incorporating power noise with the associated sinusoidal flow. Both chaotic and non-chaotic dynamics of sinusoidal flow in red blood cell are identified by 0–1 test. Furthermore, dynamical complexity of the sinusoidal flow in the system is investigated by heterogeneous recurrence-based entropy. The numerical simulation is performed to quantify the existence of chaotic dynamics and complexity for the sinusoidal blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Mohandas, E. Evans, Annu. Rev. Biophys. Biomol. Struct. 23, 787 (1994)

    Article  Google Scholar 

  2. R. Tran-Son-Tay, S.P. Sutera, P.R. Rao, Biophys. J. 46, 65–72 (1984)

    Article  Google Scholar 

  3. M. Abkarian, M. Faivre, A. Viallat, Phys. Rev. Lett. 98, 188302 (2007)

  4. J. Dupire, M. Abkarian, A. Viallat, Phys. Rev. Lett. 104 (2010)

  5. F. Takens, Lect. Notes Math. 898, 366–381 (1981)

    Article  Google Scholar 

  6. D.T. Kaplan, L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995)

    Book  Google Scholar 

  7. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Boston, 1994)

    Google Scholar 

  8. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  9. L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257–266 (2017)

    Article  ADS  Google Scholar 

  10. S. He, S. Banerjee, Phys. A 501, 408–417 (2018)

    Article  MathSciNet  Google Scholar 

  11. B. Yan, S. Mukherjee, S. He, Eur. Phys. J. Spec. Top. 228, 2769–2777 (2019)

    Article  Google Scholar 

  12. S. Banerjee, M.R.K. Ariffin, Opt. Laser. Technol. 45, 435–442 (2013)

    Article  ADS  Google Scholar 

  13. S.K. Palit, N.A.A. Fataf, M.R. Said, S. Mukherjee, S. Banerjee, Eur. Phys. J. Spec. Top. 226, 2219–2234 (2017)

    Article  Google Scholar 

  14. T.S. Dang, S.K. Palit, S. Mukherjee, T.M. Hoang, S. Banerjee, Eur. Phys. J. Spec. Top. 225, 159–170 (2016)

  15. T.M. Hoang, S.K. Palit, S. Mukherjee, S. Banerjee, Optik 127, 10930–10947 (2016)

    Article  ADS  Google Scholar 

  16. G. A. Gottwald, I. Melbourne, Proc. R. Soc. Lond. A Math., Phys. Eng. Sci. 460, 603 (2004)

  17. G.A. Gottwald, I. Melbourne, Phys. Rev. E 77, 028201 (2008)

  18. C. Skokos, G.A. Gottwald, J. Laskar, Lect. Notes Phys. 915, 221–247 (2016)

    Article  Google Scholar 

  19. G.A. Gottwald, I. Melbourne, Phys. D 212, 100–110 (2005)

    Article  MathSciNet  Google Scholar 

  20. D. Daems, G. Nicolis, Phys. Rev. E 59, 4000–4006 (1999)

  21. A.N. Kolmogorov, I.R.E. Trans, Inf. Theory 2, 102–108 (1956)

    Google Scholar 

  22. S. Mukherjee, S.K. Palit, S. Banerjee, M.R.K. Ariffin, L. Rondoni, D.K. Bhattacharya, Phys. A 439, 93–102 (2015)

    Article  MathSciNet  Google Scholar 

  23. S. Banerjee, S.K. Palit, S. Mukherjee, M.R.K. Ariffin, L. Rondoni, Chaos 26, 033105 (2016)

  24. S. Mukherjee, S. Banerjee, L. Rondoni, Phys. A 508, 131–140 (2018)

    Article  Google Scholar 

  25. Ya G. Sinai, Dokl. Russ. Acad. Sci. 124, 768–771 (1959)

    Google Scholar 

  26. S. He, C. Li, K. Sun, S. Jafari, Entropy 20, 556 (2018)

    Article  ADS  Google Scholar 

  27. B. Yan, S.K. Palit, S. Mukherjee, S. Banerjee, Phys. A 535, 122433 (2019)

  28. J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  29. N. Marwan, M. Carmen, M. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Yang, Y. Chen, Chaos 24, 013138 (2014)

  31. Y. Chen, H. Yang, Eur. Phys. J. B 89, 1–11 (2016)

    Article  Google Scholar 

  32. R. Chen, F. Imani, H. Yang, IEEE J. Biomed. Health Inform. 24, 1619–1631 (2020)

    Article  Google Scholar 

  33. C. Cheng, C. Kan, H. Yang, Comput. Biol. Med. 75, 10–18 (2016)

    Article  Google Scholar 

  34. H. Yang, C.-B. Chen, S. Kumara, Chaos 30, 013119 (2020)

  35. K.L. Hansen, V.V. Nikouline, J.M. Palva, R.J. Ilmoniemi, J. Neurosci. 21, 1370–1377 (2001)

    Article  Google Scholar 

  36. F. N. Hooge, 1/f noises. Phys. B+C 83, 14–23 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Mukherjee, S. & Saha, A. Exploring noise-induced chaos and complexity in a red blood cell system. Eur. Phys. J. Spec. Top. 230, 1517–1523 (2021). https://doi.org/10.1140/epjs/s11734-021-00030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00030-2

Navigation