Skip to main content

Quarkonium propagation in the quark–gluon plasma

Abstract

In relativistic heavy ion collisions at RHIC and the LHC, a quark–gluon plasma (QGP) is created for a short duration of about 10 fm/c. Quarkonia (bound states of \(c\bar{c}\) and \(b\bar{b}\)) are sensitive probes of this phase on length scales comparable to the size of the bound states which are less than 1 fm. Observations of quarkonia in these collisions provide us with a lot of information about how the presence of a QGP affects various quarkonium states. This has motivated the development of the theory of heavy quarks and their bound states in a thermal medium, and its application to the phenomenology of quarkonia in heavy ion collisions. We review some of these developments here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Within the ambit of final state interactions there is another effect that can be included. The color octet state \(Q\bar{Q}\) undergoes energy loss before giving rise to the initial mesonic state. This effect was included in Ref. [61].

References

  1. 1.

    P. Romatschke, Int. J. Mod. Phys. E 19, 1–53 (2010). https://doi.org/10.1142/S0218301310014613. arXiv:0902.3663 [hep-ph]

    ADS  Article  Google Scholar 

  2. 2.

    D.A. Teaney, https://doi.org/10.1142/9789814293297_0004. arXiv:0905.2433 [nucl-th]

  3. 3.

    T. Hirano, Prog. Theor. Phys. Suppl. 195, 1–18 (2012). https://doi.org/10.1143/PTPS.195.1

    ADS  Article  Google Scholar 

  4. 4.

    H. Song, Pramana 84, 703–715 (2015). https://doi.org/10.1007/s12043-015-0971-2. arXiv:1401.0079 [nucl-th]

    ADS  Article  Google Scholar 

  5. 5.

    C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013). https://doi.org/10.1142/S0217751X13400113. arXiv:1301.5893 [nucl-th]

    ADS  Article  Google Scholar 

  6. 6.

    U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci., 2013, pp. 123–151. https://doi.org/10.1146/annurev-nucl-102212-170540. arXiv:1301.2826 [nucl-th]

    Book  Google Scholar 

  7. 7.

    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039. arXiv:1409.8164 [nucl-th]

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    S. Jeon, U. Heinz, Int. J. Mod. Phys. E 24(10), 1530010 (2015). https://doi.org/10.1142/S0218301315300106. arXiv:1503.03931 [hep-ph]

    ADS  Article  Google Scholar 

  9. 9.

    A. Jaiswal, V. Roy, Adv. High Energy Phys. 2016, 9623034 (2016). https://doi.org/10.1155/2016/9623034. arXiv:1605.08694 [nucl-th]

    Article  Google Scholar 

  10. 10.

    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). https://doi.org/10.1103/PhysRevLett.99.172301. arXiv:0706.1522 [nucl-th]

    ADS  Article  Google Scholar 

  11. 11.

    U.W. Heinz, J.S. Moreland, H. Song, Phys. Rev. C 80, 061901 (2009). https://doi.org/10.1103/PhysRevC.80.061901. arXiv:0908.2617 [nucl-th]

    ADS  Article  Google Scholar 

  12. 12.

    B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010). https://doi.org/10.1103/PhysRevC.82.014903. arXiv:1004.1408 [hep-ph]

    ADS  Article  Google Scholar 

  13. 13.

    U.A. Wiedemann, Nucl. Phys. B 582, 409–450 (2000). https://doi.org/10.1016/S0550-3213(00)00286-8. arXiv:hep-ph/0003021

    ADS  Article  Google Scholar 

  14. 14.

    S. Caron-Huot, Phys. Rev. D 79, 065039 (2009). https://doi.org/10.1103/PhysRevD.79.065039. arXiv:0811.1603 [hep-ph]

    ADS  Article  Google Scholar 

  15. 15.

    A. Majumder, Phys. Rev. C 87, 034905 (2013). https://doi.org/10.1103/PhysRevC.87.034905. arXiv:1202.5295 [nucl-th]

    ADS  Article  Google Scholar 

  16. 16.

    E. Eichten, S. Godfrey, H. Mahlke, J.L. Rosner, Rev. Mod. Phys. 80, 1161 (2008). https://doi.org/10.1103/RevModPhys.80.1161. arXiv:hep-ph/0701208

    ADS  Article  Google Scholar 

  17. 17.

    G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995). (Erratum-ibid. D 55, 5853 (1997))

    ADS  Article  Google Scholar 

  18. 18.

    C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979). https://doi.org/10.1016/0370-1573(79)90095-4

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980). https://doi.org/10.1103/PhysRevD.21.203

    ADS  Article  Google Scholar 

  20. 20.

    S.W. Otto, J.D. Stack, Phys. Rev. Lett. 52, 2328 (1984). https://doi.org/10.1103/PhysRevLett.52.2328

    ADS  Article  Google Scholar 

  21. 21.

    N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nucl. Phys. B 566, 275 (2000). https://doi.org/10.1016/S0550-3213(99)00693-8. arXiv:hep-ph/9907240

    ADS  Article  Google Scholar 

  22. 22.

    N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). https://doi.org/10.1103/RevModPhys.77.1423. arXiv:hep-ph/0410047

    ADS  Article  Google Scholar 

  23. 23.

    N. Brambilla, A. Vairo, X. Garcia Tormo, I.J. Soto, Phys. Rev. D 80, 034016 (2009). https://doi.org/10.1103/PhysRevD.80.034016. arXiv:0906.1390 [hep-ph]

    ADS  Article  Google Scholar 

  24. 24.

    N. Brambilla, A. Pineda, J. Soto, A. Vairo, Phys. Lett. B 470, 215 (1999). https://doi.org/10.1016/S0370-2693(99)01301-5. arXiv:hep-ph/9910238

    ADS  Article  Google Scholar 

  25. 25.

    B.A. Kniehl, A.A. Penin, V.A. Smirnov, M. Steinhauser, Nucl. Phys. B 635, 357–383 (2002). https://doi.org/10.1016/S0550-3213(02)00403-0. arXiv:hep-ph/0203166

    ADS  Article  Google Scholar 

  26. 26.

    M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455–511 (2008). https://doi.org/10.1016/j.ppnp.2008.02.001. arXiv:0711.4556 [hep-ph]

    ADS  Article  Google Scholar 

  27. 27.

    N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9. arXiv:1010.5827 [hep-ph]

    ADS  Article  Google Scholar 

  28. 28.

    C. Patrignani, T.K. Pedlar, J.L. Rosner, Ann. Rev. Nucl. Part. Sci. 63, 21–44 (2013). https://doi.org/10.1146/annurev-nucl-102212-170609. arXiv:1212.6552 [hep-ex]

    ADS  Article  Google Scholar 

  29. 29.

    W.W. Repko, M.D. Santia, S.F. Radford, Nucl. Phys. A 924, 65–73 (2014). https://doi.org/10.1016/j.nuclphysa.2014.01.005. arXiv:1211.6373 [hep-ph]

    ADS  Article  Google Scholar 

  30. 30.

    S.F. Radford, W.W. Repko, Phys. Rev. D 75, 074031 (2007). https://doi.org/10.1103/PhysRevD.75.074031. arXiv:hep-ph/0701117

    ADS  Article  Google Scholar 

  31. 31.

    N. Brambilla, H.S. Chung, D. Müller, A. Vairo, JHEP 04, 095 (2020). https://doi.org/10.1007/JHEP04(2020)095. arXiv:2002.07462 [hep-ph]

    ADS  Article  Google Scholar 

  32. 32.

    O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B 543, 41 (2002). https://doi.org/10.1016/S0370-2693(02)02415-2. arXiv:hep-lat/0207002

    ADS  Article  Google Scholar 

  33. 33.

    S. Digal, S. Fortunato, P. Petreczky, Phys. Rev. D 68, 034008 (2003). https://doi.org/10.1103/PhysRevD.68.034008. arXiv:hep-lat/0304017

    ADS  Article  Google Scholar 

  34. 34.

    O. Kaczmarek, S. Ejiri, F. Karsch, E. Laermann, F. Zantow, Prog. Theor. Phys. Suppl. 153, 287 (2004). https://doi.org/10.1143/PTPS.153.287. arXiv:hepy-lat/0312015

    ADS  Article  Google Scholar 

  35. 35.

    O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005). https://doi.org/10.1103/PhysRevD.71.114510. arXiv:hep-lat/0503017

    ADS  Article  Google Scholar 

  36. 36.

    M. Doring, K. Huebner, O. Kaczmarek, F. Karsch, Phys. Rev. D 75, 054504 (2007). https://doi.org/10.1103/PhysRevD.75.054504. arXiv:hep-lat/0702009

    ADS  Article  Google Scholar 

  37. 37.

    M.E. Peskin, Nucl. Phys. B 156, 365 (1979)

    ADS  Article  Google Scholar 

  38. 38.

    G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979). https://doi.org/10.1016/0550-3213(79)90200-1

    ADS  Article  Google Scholar 

  39. 39.

    T. Matsui, H. Satz, Phys. Lett. B 178, 416–422 (1986)

    ADS  Article  Google Scholar 

  40. 40.

    F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988). https://doi.org/10.1007/BF01549722

    ADS  Article  Google Scholar 

  41. 41.

    F. Karsch, H. Satz, Zeitschrift für Physik C Part. Fields 51(2), 209 (1991)

    Article  Google Scholar 

  42. 42.

    S. Digal, P. Petreczky, H. Satz, Phys. Rev. D 64, 094015 (2001). https://doi.org/10.1103/PhysRevD.64.094015. arXiv:hep-ph/0106017

    ADS  Article  Google Scholar 

  43. 43.

    R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010). https://doi.org/10.1016/j.ppnp.2010.07.002. arXiv:0807.2470 [hep-ph]

    ADS  Article  Google Scholar 

  44. 44.

    R. Rapp, H. van Hees, arXiv:0903.1096 [hep-ph]

  45. 45.

    Z. Conesa del Valle et al., Nucl. Phys. Proc. Suppl. 214, 3 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 0703, 054 (2007). arXiv:hep-ph/0611300 [hep-ph]

  47. 47.

    Y. Burnier, O. Kaczmarek, A. Rothkopf, JHEP 12, 101 (2015). https://doi.org/10.1007/JHEP12(2015)101. arXiv:1509.07366 [hep-ph]

    ADS  Article  Google Scholar 

  48. 48.

    S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004). https://doi.org/10.1103/PhysRevD.69.094507. arXiv:hep-lat/0312037

    ADS  Article  Google Scholar 

  49. 49.

    T. Umeda, K. Nomura, H. Matsufuru, Eur. Phys. J. C 39S1, 9–26 (2005). https://doi.org/10.1140/epjcd/s2004-01-002-1. arXiv:hep-lat/0211003

    ADS  Article  Google Scholar 

  50. 50.

    M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004). https://doi.org/10.1103/PhysRevLett.92.012001. arXiv:hep-lat/0308034

    ADS  Article  Google Scholar 

  51. 51.

    A. Jakovac, P. Petreczky, K. Petrov, A. Velytsky, Phys. Rev. D 75, 014506 (2007). https://doi.org/10.1103/PhysRevD.75.014506. arXiv:hep-lat/0611017

    ADS  Article  Google Scholar 

  52. 52.

    A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008). arXiv:0705.2559 [hep-ph]

  53. 53.

    A. Mocsy, P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007). arXiv:0706.2183 [hep-ph]

  54. 54.

    P. Petreczky, C. Miao, A. Mocsy, Nucl. Phys. A 855, 125–132 (2011). https://doi.org/10.1016/j.nuclphysa.2011.02.028. arXiv:1012.4433 [hep-ph]

    ADS  Article  Google Scholar 

  55. 55.

    A. Bazavov, P. Petreczky, A. Velytsky, https://doi.org/10.1142/9789814293297_0002. arXiv:0904.1748 [hep-ph]

  56. 56.

    G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M. Ryan, D.K. Sinclair, J.I. Skullerud, JHEP 1111, 103 (2011). https://doi.org/10.1007/JHEP11(2011)103. arXiv:1109.4496 [hep-lat]

    ADS  Article  Google Scholar 

  57. 57.

    F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky, Phys. Rev. D 85, 114501 (2012). https://doi.org/10.1103/PhysRevD.85.114501. arXiv:1203.3770 [hep-lat]

    ADS  Article  Google Scholar 

  58. 58.

    P. Petreczky, J. Phys. G 39, 093002 (2012). https://doi.org/10.1088/0954-3899/39/9/093002. arXiv:1203.5320 [hep-lat]

    ADS  Article  Google Scholar 

  59. 59.

    S. Datta, Pramana 84(5), 881 (2015). https://doi.org/10.1007/s12043-015-0975-y. arXiv:1403.8151 [nucl-th]

    ADS  Article  Google Scholar 

  60. 60.

    A. Rothkopf, Phys. Rept. 858, 1–117 (2020). arXiv:1912.02253 [hep-ph]

  61. 61.

    S. Aronson, E. Borras, B. Odegard, R. Sharma, I. Vitev, Phys. Lett. B 778, 384 (2018). https://doi.org/10.1016/j.physletb.2018.01.038. arXiv:1709.02372 [hep-ph]

    ADS  Article  Google Scholar 

  62. 62.

    J. Hoelck, F. Nendzig, G. Wolschin, Phys. Rev. C 95(2), 024905 (2017). https://doi.org/10.1103/PhysRevC.95.024905. arXiv:1602.00019 [hep-ph]

    ADS  Article  Google Scholar 

  63. 63.

    M.A. Escobedo, J. Soto, M. Mannarelli, Phys. Rev. D 84, 016008 (2011) and references therein. arXiv:1105.1249 [hep-ph]

  64. 64.

    J. Boyd, T. Cook, A. Islam, M. Strickland, Phys. Rev. D 100(7), 076019 (2019). https://doi.org/10.1103/PhysRevD.100.076019. arXiv:1905.05676 [hep-ph]

    ADS  Article  Google Scholar 

  65. 65.

    Y. Akamatsu, A. Rothkopf, Phys. Rev. D 85, 105011 (2012). https://doi.org/10.1103/PhysRevD.85.105011. arXiv:1110.1203 [hep-ph]

    ADS  Article  Google Scholar 

  66. 66.

    Y. Akamatsu, Phys. Rev. D 87(4), 045016 (2013). https://doi.org/10.1103/PhysRevD.87.045016. arXiv:1209.5068 [hep-ph]

    ADS  Article  Google Scholar 

  67. 67.

    Y. Akamatsu, Phys. Rev. D 91(5), 56002 (2015). https://doi.org/10.1103/PhysRevD.91.056002. arXiv:1403.5783 [hep-ph]

    ADS  Article  Google Scholar 

  68. 68.

    Y. Akamatsu, Phys. Rev. C 92(4), 044911 (2015). https://doi.org/10.1103/PhysRevC.92.044911. arXiv:1503.08110 [nucl-th]

    ADS  Article  Google Scholar 

  69. 69.

    S. Kajimoto, Y. Akamatsu, M. Asakawa, A. Rothkopf, arXiv:1705.03365 [nucl-th]

  70. 70.

    Y. Akamatsu, M. Asakawa, S. Kajimoto, A. Rothkopf, JHEP 1807, 029 (2018). https://doi.org/10.1007/JHEP07(2018)029. arXiv:1805.00167 [nucl-th]

    ADS  Article  Google Scholar 

  71. 71.

    T. Miura, Y. Akamatsu, M. Asakawa, A. Rothkopf, arXiv:1908.06293 [nucl-th]

  72. 72.

    N. Brambilla, M.A. Escobedo, J. Soto, A. Vairo, Phys. Rev. D 96(3), 034021 (2017). https://doi.org/10.1103/PhysRevD.96.034021. arXiv:1612.07248 [hep-ph]

    ADS  Article  Google Scholar 

  73. 73.

    N. Brambilla, M.A. Escobedo, J. Soto, A. Vairo, Phys. Rev. D 97(7), 074009 (2018). https://doi.org/10.1103/PhysRevD.97.074009. arXiv:1711.04515 [hep-ph]

    ADS  Article  Google Scholar 

  74. 74.

    N. Brambilla, M.A. Escobedo, A. Vairo, P. Vander Griend, Phys. Rev. D 100(5), 054025 (2019). https://doi.org/10.1103/PhysRevD.100.054025. arXiv:1903.08063 [hep-ph]

    ADS  Article  Google Scholar 

  75. 75.

    N. Brambilla et al., TUMQCD Collaboration, arXiv:1912.00689 [hep-lat]

  76. 76.

    J.P. Blaizot, D. De Boni, P. Faccioli, G. Garberoglio, Nucl. Phys. A 946, 49 (2016). https://doi.org/10.1016/j.nuclphysa.2015.10.011. arXiv:1503.03857 [nucl-th]

    ADS  Article  Google Scholar 

  77. 77.

    J.P. Blaizot, M.A. Escobedo, JHEP 1806, 034 (2018). https://doi.org/10.1007/JHEP06(2018)034. arXiv:1711.10812 [hep-ph]

    ADS  Article  Google Scholar 

  78. 78.

    J.P. Blaizot, M.A. Escobedo, Phys. Rev. D 98(7), 074007 (2018). https://doi.org/10.1103/PhysRevD.98.074007. arXiv:1803.07996 [hep-ph]

    ADS  Article  Google Scholar 

  79. 79.

    X. Yao, B. Müller, Phys. Rev. C 97(1), 014908 (2018). Erratum: [Phys. Rev. C 97(4), 049903 (2018)]. https://doi.org/10.1103/PhysRevC.97.049903. https://doi.org/10.1103/PhysRevC.97.014908. arXiv:1709.03529 [hep-ph]

  80. 80.

    X. Yao, B. Müller, Phys. Rev. D 100(1), 014008 (2019). https://doi.org/10.1103/PhysRevD.100.014008. arXiv:1811.09644 [hep-ph]

    ADS  MathSciNet  Article  Google Scholar 

  81. 81.

    X. Yao, T. Mehen, Phys. Rev. D 99(9), 096028 (2019). https://doi.org/10.1103/PhysRevD.99.096028. arXiv:1811.07027 [hep-ph]

    ADS  MathSciNet  Article  Google Scholar 

  82. 82.

    X. Yao, B. Müller, Phys. Rev. D 97(7), 074003 (2018). https://doi.org/10.1103/PhysRevD.97.074003. arXiv:1801.02652 [hep-ph]

    ADS  Article  Google Scholar 

  83. 83.

    X. Yao, T. Mehen, arXiv:2009.02408 [hep-ph]

  84. 84.

    A. Islam, M. Strickland, arXiv:2010.05457 [hep-ph]

  85. 85.

    R. Sharma, A. Tiwari, Phys. Rev. D 101(7), 074004 (2020). https://doi.org/10.1103/PhysRevD.101.074004. arXiv:1912.07036 [hep-ph]

    ADS  Article  Google Scholar 

  86. 86.

    A. Andronic et al., Eur. Phys. J. C 76(3), 107 (2016). https://doi.org/10.1140/epjc/s10052-015-3819-5. arXiv:1506.03981 [nucl-ex]

    ADS  Article  Google Scholar 

  87. 87.

    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, [arXiv:1101.0618]

  88. 88.

    A. Mocsy, P. Petreczky, M. Strickland, Int. J. Mod. Phys. A 28, 1340012 (2013). https://doi.org/10.1142/S0217751X13400125. arXiv:1302.2180 [hep-ph]

    ADS  Article  Google Scholar 

  89. 89.

    G. Aarts et al., Eur. Phys. J. A 53(5), 93 (2017). https://doi.org/10.1140/epja/i2017-12282-9. arXiv:1612.08032 [nucl-th]

    ADS  MathSciNet  Article  Google Scholar 

  90. 90.

    O. Philipsen, Phys. Lett. B 535, 138–144 (2002). https://doi.org/10.1016/S0370-2693(02)01777-X. arXiv:hep-lat/0203018

    ADS  Article  Google Scholar 

  91. 91.

    L.D. McLerran, B. Svetitsky, Phys. Rev. D 24, 450 (1981). https://doi.org/10.1103/PhysRevD.24.450

    ADS  Article  Google Scholar 

  92. 92.

    Y. Burnier, M. Laine, M. Vepsalainen, JHEP 01, 043 (2008). https://doi.org/10.1088/1126-6708/2008/01/043. arXiv:0711.1743 [hep-ph]

    ADS  Article  Google Scholar 

  93. 93.

    A. Beraudo, J.-P. Blaizot, C. Ratti, Nucl. Phys. A 806, 312 (2008). https://doi.org/10.1016/j.nuclphysa.2008.03.001. arXiv:0712.4394 [nucl-th]

    ADS  Article  Google Scholar 

  94. 94.

    J.I. Kapusta, C. Gale, https://doi.org/10.1017/CBO9780511535130

  95. 95.

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1112, 116 (2011). https://doi.org/10.1007/JHEP12(2011)116. arXiv:1109.5826 [hep-ph]

    ADS  Article  Google Scholar 

  96. 96.

    Y. Akamatsu, arXiv:2009.10559 [nucl-th]

  97. 97.

    N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008)

    ADS  Article  Google Scholar 

  98. 98.

    M.A. Escobedo, J. Soto, Phys. Rev. A 78, 032520 (2008). https://doi.org/10.1103/PhysRevA.78.032520. arXiv:0804.0691 [hep-ph]

    ADS  Article  Google Scholar 

  99. 99.

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto, A. Vairo, JHEP 1009, 038 (2010). https://doi.org/10.1007/JHEP09(2010)038. arXiv:1007.4156 [hep-ph]

    ADS  Article  Google Scholar 

  100. 100.

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1107, 096 (2011). https://doi.org/10.1007/JHEP07(2011)096. arXiv:1105.4807 [hep-ph]

    ADS  Article  Google Scholar 

  101. 101.

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 1305, 130 (2013). https://doi.org/10.1007/JHEP05(2013)130. arXiv:1303.6097 [hep-ph]

    ADS  Article  Google Scholar 

  102. 102.

    S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, Phys. Rev. D 95(7), 074016 (2017). https://doi.org/10.1103/PhysRevD.95.074016. arXiv:1701.06956 [hep-ph]

    ADS  Article  Google Scholar 

  103. 103.

    Y. Burnier, A. Rothkopf, Phys. Rev. D 95(5), 054511 (2017). https://doi.org/10.1103/PhysRevD.95.054511. arXiv:1607.04049 [hep-lat]

    ADS  Article  Google Scholar 

  104. 104.

    D. Banerjee, S. Datta, R. Gavai, P. Majumdar, Phys. Rev. D 85, 014510 (2012). https://doi.org/10.1103/PhysRevD.85.014510. arXiv:1109.5738 [hep-lat]

    ADS  Article  Google Scholar 

  105. 105.

    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, W. Soldner, J. Phys. G 38, 124070 (2011). https://doi.org/10.1088/0954-3899/38/12/124070. arXiv:1107.0311 [nucl-th]

    ADS  Article  Google Scholar 

  106. 106.

    A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, H. Ohno, Phys. Rev. D 92(11), 116003 (2015). https://doi.org/10.1103/PhysRevD.92.116003. arXiv:1508.04543 [hep-lat]

    ADS  Article  Google Scholar 

  107. 107.

    A. Rothkopf, T. Hatsuda, S. Sasaki, Phys. Rev. Lett. 108, 162001 (2012). https://doi.org/10.1103/PhysRevLett.108.162001. arXiv:1108.1579 [hep-lat]

    ADS  Article  Google Scholar 

  108. 108.

    Y. Burnier, A. Rothkopf, Phys. Rev. D 87, 114019 (2013). https://doi.org/10.1103/PhysRevD.87.114019. arXiv:1304.4154 [hep-ph]

    ADS  Article  Google Scholar 

  109. 109.

    Y. Burnier, O. Kaczmarek, A. Rothkopf, Phys. Rev. Lett. 114(8), 082001 (2015). https://doi.org/10.1103/PhysRevLett.114.082001. arXiv:1410.2546 [hep-lat]

    ADS  Article  Google Scholar 

  110. 110.

    D. Bala, S. Datta, Phys. Rev. D 101(3), 034507 (2020). arXiv:1909.10548 [hep-lat]

  111. 111.

    D. Bala, S. Datta, PoS Lattice 2019, 164 (2019) arXiv:1912.04826 [hep-lat]

  112. 112.

    S. Gupta, K. Huebner, O. Kaczmarek, Phys. Rev. D 77, 034503 (2008). https://doi.org/10.1103/PhysRevD.77.034503. arXiv:0711.2251 [hep-lat]

    ADS  Article  Google Scholar 

  113. 113.

    N. Brambilla, J. Ghiglieri, P. Petreczky, A. Vairo, Phys. Rev. D 82, 074019 (2010). https://doi.org/10.1103/PhysRevD.82.074019. arXiv:1007.5172 [hep-ph]

    ADS  Article  Google Scholar 

  114. 114.

    M. Berwein, N. Brambilla, J. Ghiglieri, A. Vairo, JHEP 1303, 069 (2013). https://doi.org/10.1007/JHEP03(2013)069. arXiv:1212.4413 [hep-th]

    ADS  Article  Google Scholar 

  115. 115.

    M. Berwein, N. Brambilla, A. Vairo, Phys. Part. Nucl. 45(4), 656 (2014). https://doi.org/10.1134/S1063779614040029. arXiv:1312.6651 [hep-th]

    Article  Google Scholar 

  116. 116.

    M. Berwein, N. Brambilla, P. Petreczky, A. Vairo, Phys. Rev. D 93(3), 034010 (2016). https://doi.org/10.1103/PhysRevD.93.034010. arXiv:1512.08443 [hep-ph]

    ADS  Article  Google Scholar 

  117. 117.

    M. Berwein, N. Brambilla, P. Petreczky, A. Vairo, Phys. Rev. D 96(1), 014025 (2017). https://doi.org/10.1103/PhysRevD.96.014025. arXiv:1704.07266 [hep-ph]

    ADS  Article  Google Scholar 

  118. 118.

    A. Bazavov, N. Brambilla, H.-T. Ding, P. Petreczky, H.-P. Schadler, A. Vairo, J.H. Weber, Phys. Rev. D 93(11), 114502 (2016). https://doi.org/10.1103/PhysRevD.93.114502. arXiv:1603.06637 [hep-lat]

    ADS  Article  Google Scholar 

  119. 119.

    A. Bazavov et al. [TUMQCD Collaboration], Phys. Rev. D 98(5), 054511 (2018). https://doi.org/10.1103/PhysRevD.98.054511. arXiv:1804.10600 [hep-lat]

  120. 120.

    S.S. Adler et al., [PHENIX Collaboration], Phys. Rev. C 69, 014901 (2004). https://doi.org/10.1103/PhysRevC.69.014901. arXiv:nucl-ex/0305030

  121. 121.

    A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 98, 232301 (2007). https://doi.org/10.1103/PhysRevLett.98.232301. arXiv:nucl-ex/0611020

  122. 122.

    A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 101, 122301 (2008). https://doi.org/10.1103/PhysRevLett.101.122301. arXiv:0801.0220 [nucl-ex]

  123. 123.

    B.I. Abelev et al., [STAR Collaboration], Phys. Rev. C 80, 041902 (2009). https://doi.org/10.1103/PhysRevC.80.041902. arXiv:0904.0439 [nucl-ex]

  124. 124.

    A. Adare et al., [PHENIX Collaboration], Phys. Rev. C 84, 054912 (2011). https://doi.org/10.1103/PhysRevC.84.054912. arXiv:1103.6269 [nucl-ex]

  125. 125.

    L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 111(5), 052301 (2013). https://doi.org/10.1103/PhysRevLett.111.052301. arXiv:1212.3304 [nucl-ex]

  126. 126.

    L. Adamczyk et al., [STAR Collaboration], Phys. Lett. B 722, 55 (2013). https://doi.org/10.1016/j.physletb.2013.04.010. arXiv:1208.2736 [nucl-ex]

  127. 127.

    A. Adare et al., [PHENIX Collaboration], Phys. Rev. C 86, 064901 (2012). https://doi.org/10.1103/PhysRevC.86.064901. arXiv:1208.2251 [nucl-ex]

  128. 128.

    L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 90(2), 024906 (2014). https://doi.org/10.1103/PhysRevC.90.024906. arXiv:1310.3563 [nucl-ex]

  129. 129.

    C. Aidala et al. [PHENIX Collaboration], Phys. Rev. C 90(6), 064908 (2014). https://doi.org/10.1103/PhysRevC.90.064908. arXiv:1404.1873 [nucl-ex]

  130. 130.

    A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 93(3), 034903 (2016). https://doi.org/10.1103/PhysRevC.93.034903. arXiv:1509.05380 [nucl-ex]

  131. 131.

    L. Adamczyk et al., [STAR Collaboration], Phys. Lett. B 771, 13 (2017). https://doi.org/10.1016/j.physletb.2017.04.078. arXiv:1607.07517 [hep-ex]

  132. 132.

    J. Adam et al. [STAR Collaboration], Phys. Rev. Lett. 123(13), 132302 (2019). https://doi.org/10.1103/PhysRevLett.123.132302. arXiv:1904.11658 [hep-ex]

  133. 133.

    J. Adam et al., [STAR Collaboration], Phys. Lett. B 797, 134917 (2019). https://doi.org/10.1016/j.physletb.2019.134917. arXiv:1905.13669 [nucl-ex]

  134. 134.

    S. Chatrchyan et al. [CMS Collaboration], JHEP 1205, 063 (2012). https://doi.org/10.1007/JHEP05(2012)063. arXiv:1201.5069 [nucl-ex]

  135. 135.

    V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 113(26), 262301 (2014). https://doi.org/10.1103/PhysRevLett.113.262301. arXiv:1410.1804 [nucl-ex]

  136. 136.

    V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 77(4), 252 (2017). https://doi.org/10.1140/epjc/s10052-017-4781-1. arXiv:1610.00613 [nucl-ex]

  137. 137.

    A.M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 118(16), 162301 (2017). https://doi.org/10.1103/PhysRevLett.118.162301. arXiv:1611.01438 [nucl-ex]

  138. 138.

    G. Aad et al., [ATLAS Collaboration], Phys. Lett. B 697, 294 (2011)

  139. 139.

    G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 697, 294 (2011). https://doi.org/10.1016/j.physletb.2011.02.006. arXiv:1012.5419 [hep-ex]

  140. 140.

    M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 78(9), 762 (2018). https://doi.org/10.1140/epjc/s10052-018-6219-9. arXiv:1805.04077 [nucl-ex]

  141. 141.

    M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 78(9), 784 (2018). https://doi.org/10.1140/epjc/s10052-018-6243-9. arXiv:1807.05198 [nucl-ex]

  142. 142.

    B. Abelev et al. [ALICE Collaboration], arXiv:1202.1383 [hep-ex]

  143. 143.

    E. Abbas et al., [ALICE Collaboration], Phys. Rev. Lett. 111, 162301 (2013). https://doi.org/10.1103/PhysRevLett.111.162301. arXiv:1303.5880 [nucl-ex]

  144. 144.

    B.B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 734, 314 (2014). https://doi.org/10.1016/j.physletb.2014.05.064. arXiv:1311.0214 [nucl-ex]

  145. 145.

    J. Adam et al. [ALICE Collaboration], JHEP 1507, 051 (2015). https://doi.org/10.1007/JHEP07(2015)051. arXiv:1504.07151 [nucl-ex]

  146. 146.

    J. Adam et al., [ALICE Collaboration], JHEP 1605, 179 (2016). https://doi.org/10.1007/JHEP05(2016)179. arXiv:1506.08804 [nucl-ex]

  147. 147.

    J. Adam et al. [ALICE Collaboration], Phys. Rev. Lett. 116(22), 222301 (2016).https://doi.org/10.1103/PhysRevLett.116.222301. arXiv:1509.08802 [nucl-ex]

  148. 148.

    J. Adam et al., [ALICE Collaboration], Phys. Lett. B 766, 212 (2017). https://doi.org/10.1016/j.physletb.2016.12.064. arXiv:1606.08197 [nucl-ex]

  149. 149.

    S. Acharya et al. [ALICE Collaboration], Phys. Rev. Lett. 119(24), 242301 (2017). https://doi.org/10.1103/PhysRevLett.119.242301. arXiv:1709.05260 [nucl-ex]

  150. 150.

    S. Acharya et al., [ALICE Collaboration], Phys. Lett. B 785, 419 (2018). https://doi.org/10.1016/j.physletb.2018.08.047. arXiv:1805.04383 [nucl-ex]

  151. 151.

    S. Acharya et al., [ALICE Collaboration], JHEP 1902, 012 (2019). https://doi.org/10.1007/JHEP02(2019)012. arXiv:1811.12727 [nucl-ex]

  152. 152.

    S. Acharya et al. [ALICE Collaboration], arXiv:1909.03158 [nucl-ex]

  153. 153.

    S. Acharya et al. [ALICE Collaboration], arXiv:1910.14404 [nucl-ex]

  154. 154.

    L. Adamczyk et al. [STAR Collaboration], Phys. Lett. B 735, 127 (2014). Erratum: [Phys. Lett. B 743 (2015) 537]. https://doi.org/10.1016/j.physletb.2014.06.028. https://doi.org/10.1016/j.physletb.2015.01.046. arXiv:1312.3675 [nucl-ex]

  155. 155.

    L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 94(6), 064904 (2016). https://doi.org/10.1103/PhysRevC.94.064904. arXiv:1608.06487 [nucl-ex]

  156. 156.

    A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 91(2), 024913, (2015). https://doi.org/10.1103/PhysRevC.91.024913. arXiv:1404.2246 [nucl-ex]

  157. 157.

    S. Chatrchyan et al., [CMS Collaboration]. Phys. Rev. Lett. 107, 052302 (2011)

  158. 158.

    V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 770, 357 (2017) https://doi.org/10.1016/j.physletb.2017.04.031 [arXiv:1611.01510 [nucl-ex]]

  159. 159.

    A.M. Sirunyan et al. [CMS Collaboration], arXiv:1706.05984 [hep-ex]

  160. 160.

    A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 77, 024912 (2008). Erratum: [Phys. Rev. C 79 (2009) 059901]. https://doi.org/10.1103/PhysRevC.77.024912. https://doi.org/10.1103/PhysRevC.79.059901. arXiv:0903.4845 [nucl-ex]. arXiv:0711.3917 [nucl-ex]

  161. 161.

    S.S. Adler et al., [PHENIX Collaboration], Phys. Rev. Lett. 96, 012304 (2006). https://doi.org/10.1103/PhysRevLett.96.012304. arXiv:nucl-ex/0507032

  162. 162.

    A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 107, 142301 (2011). https://doi.org/10.1103/PhysRevLett.107.142301. arXiv:1010.1246 [nucl-ex]

  163. 163.

    L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 93 (2016) no.6, 064904 https://doi.org/10.1103/PhysRevC.93.064904 [arXiv:1602.02212 [nucl-ex]]

  164. 164.

    B.B. Abelev et al. [ALICE Collaboration], JHEP 1402, 073 (2014). https://doi.org/10.1007/JHEP02(2014)073. arXiv:1308.6726 [nucl-ex]

  165. 165.

    B.B. Abelev et al. [ALICE Collaboration], JHEP 1412, 073 (2014). https://doi.org/10.1007/JHEP12(2014)073. arXiv:1405.3796 [nucl-ex]

  166. 166.

    B.B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 740, 105 (2015). https://doi.org/10.1016/j.physletb.2014.11.041. arXiv:1410.2234 [nucl-ex]

  167. 167.

    J. Adam et al. [ALICE Collaboration], JHEP 1506, 055 (2015). https://doi.org/10.1007/JHEP06(2015)055. arXiv:1503.07179 [nucl-ex]

  168. 168.

    J. Adam et al. [ALICE Collaboration], JHEP 1511, 127 (2015). https://doi.org/10.1007/JHEP11(2015)127. arXiv:1506.08808 [nucl-ex]

  169. 169.

    D. Adamová et al., [ALICE Collaboration], Phys. Lett. B 776, 91 (2018). https://doi.org/10.1016/j.physletb.2017.11.008. arXiv:1704.00274 [nucl-ex]

  170. 170.

    S. Acharya et al. [ALICE Collaboration], Eur. Phys. J. C 78(6), 466 (2018). https://doi.org/10.1140/epjc/s10052-018-5881-2. arXiv:1802.00765 [nucl-ex]

  171. 171.

    S. Acharya et al., [ALICE Collaboration], JHEP 1807, 160 (2018). https://doi.org/10.1007/JHEP07(2018)160. arXiv:1805.04381 [nucl-ex]

  172. 172.

    A.M. Sirunyan et al. [CMS Collaboration], Eur. Phys. J. C 77(4), 269 (2017). https://doi.org/10.1140/epjc/s10052-017-4828-3. arXiv:1702.01462 [nucl-ex]

  173. 173.

    G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 92(3), 034904 (2015). https://doi.org/10.1103/PhysRevC.92.034904. arXiv:1505.08141 [hep-ex]

  174. 174.

    The ATLAS collaboration, ATLAS-CONF-2015-050

  175. 175.

    R. Aaij et al. [LHCb Collaboration], JHEP 1402, 072 (2014). https://doi.org/10.1007/JHEP02(2014)072. arXiv:1308.6729 [nucl-ex]

  176. 176.

    L. Grandchamp, R. Rapp, Phys. Lett. B 523, 60 (2001). https://doi.org/10.1016/S0370-2693(01)01311-9. arXiv:hep-ph/0103124

    ADS  Article  Google Scholar 

  177. 177.

    L. Grandchamp, R. Rapp, Nucl. Phys. A 709, 415 (2002). https://doi.org/10.1016/S0375-9474(02)01027-8. arXiv:hep-ph/0205305

    ADS  Article  Google Scholar 

  178. 178.

    L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004). https://doi.org/10.1103/PhysRevLett.92.212301. arXiv:hep-ph/0306077

    ADS  Article  Google Scholar 

  179. 179.

    L. Grandchamp, S. Lumpkins, D. Sun, H. van Hees, R. Rapp, Phys. Rev. C 73, 064906 (2006). https://doi.org/10.1103/PhysRevC.73.064906. arXiv:hep-ph/0507314

    ADS  Article  Google Scholar 

  180. 180.

    X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008). https://doi.org/10.1016/j.physletb.2008.03.068. arXiv:0712.2407 [hep-ph]

    ADS  Article  Google Scholar 

  181. 181.

    X. Zhao, R. Rapp, arXiv:0806.1239 [nucl-th]

  182. 182.

    M. Mannarelli, R. Rapp, Phys. Rev. C 72, 064905 (2005). https://doi.org/10.1103/PhysRevC.72.064905. arXiv:hep-ph/0505080

    ADS  Article  Google Scholar 

  183. 183.

    D. Cabrera, R. Rapp, Phys. Rev. D 76, 114506 (2007). https://doi.org/10.1103/PhysRevD.76.114506. arXiv:hep-ph/0611134

    ADS  Article  Google Scholar 

  184. 184.

    H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008). https://doi.org/10.1103/PhysRevLett.100.192301. arXiv:0709.2884 [hep-ph]

    ADS  Article  Google Scholar 

  185. 185.

    F. Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010). https://doi.org/10.1103/PhysRevC.82.035201. arXiv:1005.0769 [hep-ph]

    ADS  Article  Google Scholar 

  186. 186.

    X. Zhao, R. Rapp, Phys. Rev. C 82, 064905 (2010). https://doi.org/10.1103/PhysRevC.82.064905. arXiv:1008.5328 [hep-ph]

    ADS  Article  Google Scholar 

  187. 187.

    A. Emerick, X. Zhao, R. Rapp, Eur. Phys. J. A 48, 72 (2012). https://doi.org/10.1140/epja/i2012-12072-y. arXiv:1111.6537 [hep-ph]

    ADS  Article  Google Scholar 

  188. 188.

    X. Zhao, A. Emerick, R. Rapp, Nucl. Phys. A 904–905, 611c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.088. arXiv:1210.6583 [hep-ph]

    ADS  Article  Google Scholar 

  189. 189.

    S.Y.F. Liu, R. Rapp, Nucl. Phys. A 941, 179 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.001. arXiv:1501.07892 [hep-ph]

    ADS  Article  Google Scholar 

  190. 190.

    X. Du, R. Rapp, M. He, arXiv:1706.08670 [hep-ph]

  191. 191.

    S.Y.F. Liu, R. Rapp, Phys. Rev. C 97(3), 034918 (2018). https://doi.org/10.1103/PhysRevC.97.034918. arXiv:1711.03282 [nucl-th]

    ADS  Article  Google Scholar 

  192. 192.

    X. Du, S.Y.F. Liu, R. Rapp, Phys. Lett. B 796, 20 (2019). https://doi.org/10.1016/j.physletb.2019.07.032. arXiv:1904.00113 [nucl-th]

    ADS  Article  Google Scholar 

  193. 193.

    V. Greco, C.M. Ko, R. Rapp, Phys. Lett. B 595, 202 (2004). https://doi.org/10.1016/j.physletb.2004.06.064. arXiv:nucl-th/0312100

    ADS  Article  Google Scholar 

  194. 194.

    B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, S. Pal, Phys. Rev. C 65, 054909 (2002). https://doi.org/10.1103/PhysRevC.65.054909. arXiv:nucl-th/0201038

    ADS  Article  Google Scholar 

  195. 195.

    R.L. Thews, Nucl. Phys. A 783, 301 (2007). https://doi.org/10.1016/j.nuclphysa.2006.11.084. arXiv:hep-ph/0609121

    ADS  Article  Google Scholar 

  196. 196.

    S.A. Bass, J. Phys. Conf. Ser. 50, 279 (2006)

    ADS  Article  Google Scholar 

  197. 197.

    L. Yan, P. Zhuang, N. Xu, Phys. Rev. Lett. 97, 232301 (2006). https://doi.org/10.1103/PhysRevLett.97.232301. arXiv:nucl-th/0608010

    ADS  Article  Google Scholar 

  198. 198.

    A. Capella, L. Bravina, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Eur. Phys. J. C 58, 437 (2008). https://doi.org/10.1140/epjc/s10052-008-0772-6. arXiv:0712.4331 [hep-ph]

    ADS  Article  Google Scholar 

  199. 199.

    L. Bravina, A. Capella, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Eur. Phys. J. C 61, 865 (2009). https://doi.org/10.1140/epjc/s10052-009-0906-5. arXiv:0811.0790 [hep-ph]

    ADS  Article  Google Scholar 

  200. 200.

    R. Peng, C.B. Yang, Nucl. Phys. A 837, 54 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.006

    ADS  Article  Google Scholar 

  201. 201.

    E.G. Ferreiro, Phys. Lett. B 731, 57 (2014). https://doi.org/10.1016/j.physletb.2014.02.011. arXiv:1210.3209 [hep-ph]

    ADS  Article  Google Scholar 

  202. 202.

    P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 690, 119 (2001). https://doi.org/10.1016/S0375-9474(01)00936-8. arXiv:nucl-th/0012064

    ADS  Article  Google Scholar 

  203. 203.

    R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001). https://doi.org/10.1103/PhysRevC.63.054905. arXiv:hep-ph/0007323

    ADS  Article  Google Scholar 

  204. 204.

    L. Yan, P. Zhuang, N. Xu, Phys. Rev. Lett. 97(23), 232301 (2006)

    ADS  Article  Google Scholar 

  205. 205.

    A.P. Kostyuk, M.I. Gorenstein, H. Stoecker, W. Greiner, Phys. Rev. C 68, 041902 (2003). https://doi.org/10.1103/PhysRevC.68.041902. arXiv:hep-ph/0305277

    ADS  Article  Google Scholar 

  206. 206.

    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, J. Phys. G 38, 124081 (2011). https://doi.org/10.1088/0954-3899/38/12/124081. arXiv:1106.6321 [nucl-th]

    ADS  Article  Google Scholar 

  207. 207.

    S. Gupta, R. Sharma, Phys. Rev. C 89(5), 057901 (2014). https://doi.org/10.1103/PhysRevC.89.057901. arXiv:1401.2930 [nucl-th]

    ADS  Article  Google Scholar 

  208. 208.

    J. Hoelck, G. Wolschin, Eur. Phys. J. A 53(12), 241 (2017). https://doi.org/10.1140/epja/i2017-12441-0. arXiv:1712.06871 [hep-ph]

    ADS  Article  Google Scholar 

  209. 209.

    A. Dumitru, Y. Guo, M. Strickland, Phys. Lett. B 662, 37 (2008). https://doi.org/10.1016/j.physletb.2008.02.048. arXiv:0711.4722 [hep-ph]

    ADS  Article  Google Scholar 

  210. 210.

    A. Dumitru, Y. Guo, A. Mocsy, M. Strickland, Phys. Rev. D 79, 054019 (2009). https://doi.org/10.1103/PhysRevD.79.054019. arXiv:0901.1998 [hep-ph]

    ADS  Article  Google Scholar 

  211. 211.

    A. Dumitru, Y. Guo, M. Strickland, Phys. Rev. D 79, 114003 (2009). https://doi.org/10.1103/PhysRevD.79.114003. arXiv:0903.4703 [hep-ph]

    ADS  Article  Google Scholar 

  212. 212.

    M. Strickland, Phys. Rev. Lett. 107, 132301 (2011). https://doi.org/10.1103/PhysRevLett.107.132301. arXiv:1106.2571 [hep-ph]

    ADS  Article  Google Scholar 

  213. 213.

    M. Strickland, D. Bazow, Nucl. Phys. A 879, 25 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.003. arXiv:1112.2761 [nucl-th]

    ADS  Article  Google Scholar 

  214. 214.

    M. Margotta, K. McCarty, C. McGahan, M. Strickland, D. Yager-Elorriaga, Phys. Rev. D 83, 105019 105019 (2011). (Erratum-ibid. D 84, 069902 (2011)). arXiv:1101.4651 [hep-ph]

  215. 215.

    C.S. Machado, F.S. Navarra, E.G. de Oliveira, J. Noronha, M. Strickland, Phys. Rev. D 88, 034009 (2013). https://doi.org/10.1103/PhysRevD.88.034009. arXiv:1305.3308 [hep-ph]

    ADS  Article  Google Scholar 

  216. 216.

    J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013). https://doi.org/10.1103/PhysRevD.88.105017. arXiv:1309.3003 [hep-ph]

    ADS  Article  Google Scholar 

  217. 217.

    B. Krouppa, R. Ryblewski, M. Strickland, Phys. Rev. C 92(6), 061901 (2015). https://doi.org/10.1103/PhysRevC.92.061901. arXiv:1507.03951 [hep-ph]

    ADS  Article  Google Scholar 

  218. 218.

    B. Krouppa, M. Strickland, Universe 2(3), 16 (2016). https://doi.org/10.3390/universe2030016. arXiv:1605.03561 [hep-ph]

    ADS  Article  Google Scholar 

  219. 219.

    B. Krouppa, A. Rothkopf, M. Strickland, Phys. Rev. D 97(1), 016017 (2018). https://doi.org/10.1103/PhysRevD.97.016017. arXiv:1710.02319 [hep-ph]

    ADS  Article  Google Scholar 

  220. 220.

    P.P. Bhaduri, N. Borghini, A. Jaiswal, M. Strickland, Phys. Rev. C 100(5), 051901 (2019). https://doi.org/10.1103/PhysRevC.100.051901. arXiv:1809.06235 [hep-ph]

    ADS  Article  Google Scholar 

  221. 221.

    T. Song, S.H. Lee, Phys. Rev. D 72, 034002 (2005). https://doi.org/10.1103/PhysRevD.72.034002. arXiv:hep-ph/0501252

    ADS  Article  Google Scholar 

  222. 222.

    Y. Park, K.I. Kim, T. Song, S.H. Lee, C.Y. Wong, Phys. Rev. C 76, 044907 (2007). https://doi.org/10.1103/PhysRevC.76.044907. arXiv:0704.3770 [hep-ph]

    ADS  Article  Google Scholar 

  223. 223.

    T. Song, Y. Park, S.H. Lee, C.Y. Wong, Phys. Lett. B 659, 621 (2008). https://doi.org/10.1016/j.physletb.2007.11.084. arXiv:0709.0794 [hep-ph]

    ADS  Article  Google Scholar 

  224. 224.

    Y. Liu, C.M. Ko, T. Song, Phys. Rev. C 88(6), 064902 (2013). https://doi.org/10.1103/PhysRevC.88.064902. arXiv:1307.4427 [hep-ph]

    ADS  Article  Google Scholar 

  225. 225.

    T. Song, W. Park, S.H. Lee, Phys. Rev. C 81, 034914 (2010). https://doi.org/10.1103/PhysRevC.81.034914. arXiv:1002.1884 [nucl-th]

    ADS  Article  Google Scholar 

  226. 226.

    T. Song, C.M. Ko, S.H. Lee, J. Xu, Phys. Rev. C 83, 014914 (2011). https://doi.org/10.1103/PhysRevC.83.014914. arXiv:1008.2730 [hep-ph]

    ADS  Article  Google Scholar 

  227. 227.

    T. Song, K.C. Han, C.M. Ko, Phys. Rev. C 84, 034907 (2011). https://doi.org/10.1103/PhysRevC.84.034907. https://doi.org/10.1103/PhysRevC.84.039902. arXiv:1103.6197 [nucl-th]

  228. 228.

    T. Song, K.C. Han, C.M. Ko, Phys. Rev. C 85, 014902 (2012). arXiv:1109.6691 [nucl-th]

  229. 229.

    T. Song, C.M. Ko, S.H. Lee, Phys. Rev. C 87(3), 034910 (2013). https://doi.org/10.1103/PhysRevC.87.034910. arXiv:1302.4395 [nucl-th]

    ADS  Article  Google Scholar 

  230. 230.

    S.H. Lee, K. Morita, T. Song, C.M. Ko, Phys. Rev. D 89(9), 094015 (2014). https://doi.org/10.1103/PhysRevD.89.094015. arXiv:1304.4092 [nucl-th]

    ADS  Article  Google Scholar 

  231. 231.

    T. Song, Phys. Rev. C 89(4), 044903 (2014). https://doi.org/10.1103/PhysRevC.89.044903. arXiv:1402.3451 [nucl-th]

    ADS  Article  Google Scholar 

  232. 232.

    T. Song, C.M. Ko, S.H. Lee, Phys. Rev. C 91(4), 044909 (2015). https://doi.org/10.1103/PhysRevC.91.044909. arXiv:1502.05734 [nucl-th]

    ADS  Article  Google Scholar 

  233. 233.

    R. Baier, R. Rückl, Zeitschrift für Physik C Part. Fields, 0170-9739, 19(3), 251–266 (1983)

  234. 234.

    B. Humpert, Phys. Lett. B 184(1), 105–107 (1987)

    ADS  Article  Google Scholar 

  235. 235.

    P.L. Cho, A.K. Leibovich, Phys. Rev. D 53, 6203 (1996)

    ADS  Article  Google Scholar 

  236. 236.

    P.L. Cho, A.K. Leibovich, Phys. Rev. D 53, 150 (1996)

    ADS  Article  Google Scholar 

  237. 237.

    E. Braaten, S. Fleming, A.K. Leibovich, Phys. Rev. D 63, 094006 (2001)

    ADS  Article  Google Scholar 

  238. 238.

    K. Sridhar, Phys. Rev. Lett. 77, 4880 (1996). https://doi.org/10.1103/PhysRevLett.77.4880. arXiv:hep-ph/9609285

    ADS  Article  Google Scholar 

  239. 239.

    M. Butenschon, B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011). arXiv:1009.5662 [hep-ph]

  240. 240.

    M. Butenschoen, B.A. Kniehl, Phys. Rev. D 84, 051501 (2011). arXiv:1105.0820 [hep-ph]

  241. 241.

    M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 107, 232001 (2011). arXiv:1109.1476 [hep-ph]

  242. 242.

    K. Wang, Y.Q. Ma, K.T. Chao, Phys. Rev. D 85, 114003 (2012). https://doi.org/10.1103/PhysRevD.85.114003. arXiv:1202.6012 [hep-ph]

    ADS  Article  Google Scholar 

  243. 243.

    H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang, K.T. Chao, JHEP 1505, 103 (2015). https://doi.org/10.1007/JHEP05(2015)103. arXiv:1411.3300 [hep-ph]

    ADS  Article  Google Scholar 

  244. 244.

    R. Sharma, I. Vitev, Phys. Rev. C 87(4), 044905 (2013). https://doi.org/10.1103/PhysRevC.87.044905. arXiv:1203.0329 [hep-ph]

    ADS  Article  Google Scholar 

  245. 245.

    M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994). https://doi.org/10.1016/0550-3213(94)90079-5. arXiv:nucl-th/9306003

    ADS  Article  Google Scholar 

  246. 246.

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997). https://doi.org/10.1016/S0550-3213(96)00581-0. arXiv:hep-ph/9608322

    ADS  Article  Google Scholar 

  247. 247.

    B.G. Zakharov, JETP Lett. 63, 952 (1996). https://doi.org/10.1134/1.567126. arXiv:hep-ph/9607440

    ADS  Article  Google Scholar 

  248. 248.

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, Nucl. Phys. B 531, 403 (1998). https://doi.org/10.1016/S0550-3213(98)00546-X. arXiv:hep-ph/9804212

    ADS  Article  Google Scholar 

  249. 249.

    M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 571, 197 (2000). https://doi.org/10.1016/S0550-3213(99)00713-0. arXiv:hep-ph/9907461

    ADS  Article  Google Scholar 

  250. 250.

    M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 (2001). https://doi.org/10.1016/S0550-3213(00)00652-0. arXiv:nucl-th/0006010

    ADS  Article  Google Scholar 

  251. 251.

    U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000). https://doi.org/10.1016/S0550-3213(00)00457-0. arXiv:hep-ph/0005129

    ADS  Article  Google Scholar 

  252. 252.

    M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. D 66, 014005 (2002). https://doi.org/10.1103/PhysRevD.66.014005. arXiv:nucl-th/0201078

    ADS  Article  Google Scholar 

  253. 253.

    A. Adil, I. Vitev, Phys. Lett. B 649, 139 (2007)

    ADS  Article  Google Scholar 

  254. 254.

    R. Sharma, I. Vitev, B.W. Zhang, Phys. Rev. C 80, 054902 (2009). https://doi.org/10.1103/PhysRevC.80.054902. arXiv:0904.0032 [hep-ph]

    ADS  Article  Google Scholar 

  255. 255.

    Y. Makris, I. Vitev, JHEP 1910, 111 (2019). https://doi.org/10.1007/JHEP10(2019)111. arXiv:1906.04186 [hep-ph]

    ADS  Article  Google Scholar 

  256. 256.

    Y. Makris, I. Vitev, Nucl. Phys. A 1005, 121848 (2021). arXiv:1912.08008 [hep-ph]

  257. 257.

    N. Dutta, N. Borghini, Mod. Phys. Lett. A 30(37), 1550205 (2015). https://doi.org/10.1142/S0217732315502053. arXiv:1206.2149 [nucl-th]

    ADS  Article  Google Scholar 

  258. 258.

    H.P. Breuer, F. Petruccione, Oxford, UK: Univ. Pr. (2002), p. 625

  259. 259.

    N. Borghini, C. Gombeaud, arXiv:1103.2945 [hep-ph]

  260. 260.

    N. Borghini, C. Gombeaud, Eur. Phys. J. C 72, 2000 (2012). https://doi.org/10.1140/epjc/s10052-012-2000-7. arXiv:1109.4271 [nucl-th]

    ADS  Article  Google Scholar 

  261. 261.

    C. Young, K. Dusling, Phys. Rev. C 87(6), 065206 (2013). https://doi.org/10.1103/PhysRevC.87.065206. arXiv:1001.0935 [nucl-th]

    ADS  Article  Google Scholar 

  262. 262.

    G. Lindblad, Commun. Math. Phys. 48, 119 (1976). https://doi.org/10.1007/BF01608499

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge collaborators on various projects related to heavy quark and quarkonium physics, Samuel Aronson, Evan Borras, Sourendu Gupta, Brian Odegard, Anurag Tiwari, Ivan Vitev, and Ben-Wei Zhang. We also thank Dibyendu Bala, Saumen Datta for several illuminating discussions. We also acknowledge discussions and exchanges with Yukiano Akamatsu, Jean-Paul Blaizot, Nora Brambilla, Alexander Rothkopf, and Peter Petreczky.

Author information

Affiliations

Authors

Contributions

This single author of this review is Rishi Sharma.

Corresponding author

Correspondence to Rishi Sharma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, R. Quarkonium propagation in the quark–gluon plasma. Eur. Phys. J. Spec. Top. 230, 697–718 (2021). https://doi.org/10.1140/epjs/s11734-021-00025-z

Download citation