Skip to main content

Physics of strongly interacting matter at high net-baryon density

Abstract

Strongly interacting matter at extremely high net-baryon density has drawn a renewed interest, and high-energy heavy ion collision experiments are being performed worldwide to study such a matter. The high net-baryon densities produced in energetic heavy ion collisions are similar to those in the core of a neutron star, although the temperature is high. The equation of state and other properties of such a medium sheds light on the nature of the medium including the formation of a deconfined state of quarks and gluons called quark–gluon plasma (QGP). One such upcoming dedicated high-density experiment at FAIR-Germany called compressed baryonic matter (CBM) will be discussed in detail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S.A. Bass , M. Gyulassy, H. Stocker, W. Greiner, arXiv: hep-ph/9810281v2, P. Foka, M. Anna Janin, Rev. Phys. 1, 172 (2016)

  2. 2.

    W. Busza, K. Rajagopal, W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 1 (2018)

    Article  Google Scholar 

  3. 3.

    Y. Aoki et al., Nature 443, 675 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    J.B. Kogut et al., Phys. Rev. Lett. 50, 393 (1983)

    ADS  Article  Google Scholar 

  5. 5.

    S. Digal et al., Nucl. Phys. A 702, 159 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    K. Fukushima et al., Rep. Prog. Phys. 74, 014001 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    B. Friman et al. (ed.), The CBM physics book (Springer, 2011)

  8. 8.

    H. Gutbrod, H. Stocker, Sci. Am. 265(5), 58 (1991)

    ADS  Article  Google Scholar 

  9. 9.

    V. Friese, EPJ Web Conf. 95, 03010 (2015)

    Article  Google Scholar 

  10. 10.

    D.P. Menezes, J. Phys. Conf. Ser. 706, 032001 (2016)

    Article  Google Scholar 

  11. 11.

    S. De, Phys. Rev. C 94, 054901 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    G. Baym et al., Rep. Prog. Phys. 81, 056902 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    M. Orsaria et al., Phys. Rev. C 89, 015806 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    I. Vidana, J. Phys. Conf. Ser. 618, 012031 (2016)

    Article  Google Scholar 

  15. 15.

    E. Troja et al., Mon. Not. R. Astron. Soc. 489, 2104 (2019)

    ADS  Google Scholar 

  16. 16.

    V. Dexheimer et al., arxiv: 1905.12658

  17. 17.

    A. Andronic et al., Phys. Lett. B 673, 65 (2009)

    Article  Google Scholar 

  18. 18.

    AGS experiments, BNL-34516-Ed. 14

  19. 19.

    W. Henning, Nucl. Phys. A 734, 654 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    C. Montag, AIP Conf. Proc. 2160, 040006 (2019)

    Article  Google Scholar 

  21. 21.

    G. Rosner, Nucl. Phys. B 167, 77 (2007)

    Article  Google Scholar 

  22. 22.

    A. Kovalenko et al., EPJ Web. Conf. 191, 01003 (2018)

    Article  Google Scholar 

  23. 23.

    C. Fuchs, arxiv: nucl-th/0610038

  24. 24.

    C. Sturm et al., Phys. Rev. Lett. 86, 39 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    C. Fuchs, Phys. Rev. Lett. 86, 1964 (2001)

    ADS  Google Scholar 

  26. 26.

    C. Hartnack, J. Phys. G 28, 1649 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    C. Fuchs et al., Phys. Rev. Lett. 86, 1974 (2001)

    ADS  Article  Google Scholar 

  28. 28.

    C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)

    ADS  Article  Google Scholar 

  29. 29.

    P. Senger, Particles 2(4), 499 (2019)

    Article  Google Scholar 

  30. 30.

    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237c (2019)

    ADS  Article  Google Scholar 

  31. 31.

    P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stoecker, Phys. Lett. B 697, 203 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    C. Agakishiev et al., HADES collaboration, arxiv: 1512.07070

  34. 34.

    J. Thader, STAR collaboration, Nucl. Phys. A 956, 320 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    M. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)

    Google Scholar 

  37. 37.

    J. Adamczewski-Musch et al., Nat. Phys. 15, 1040 (2019)

    Article  Google Scholar 

  38. 38.

    R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999)

    ADS  Article  Google Scholar 

  39. 39.

    S. Damjanovic et al., Nucl. Phys. A 783, 327 (2007)

    ADS  Article  Google Scholar 

  40. 40.

    R. Rapp, H. Van Hees, Phys. Lett. B 753, 586 (2016)

    ADS  Article  Google Scholar 

  41. 41.

    T. Ablyazimov et al., Eur. Phys. J. A 53, 60 (2017)

    ADS  Article  Google Scholar 

  42. 42.

    S. Ahamad et al., Nucl. Instrum. Methods A 775, 139 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Science and Technology and the Department of Atomic Energy, Government of India, as a part of funding India’s participation in the FAIR project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subhasis Chattopadhyay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, S. Physics of strongly interacting matter at high net-baryon density. Eur. Phys. J. Spec. Top. 230, 689–696 (2021). https://doi.org/10.1140/epjs/s11734-021-00024-0

Download citation