Skip to main content
Log in

Thermoelectric transport coefficients of hot and dense QCD matter

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The presence of a nonvanishing thermal gradient and/or a chemical potential gradient in a conducting medium can lead to an electric field—an effect known as thermoelectric effect or Seebeck effect. We discuss here the thermoelectric effects for hot and dense strongly interacting matter within the framework of relativistic Boltzmann equation in the relaxation time approximation. In the context of heavy-ion collisions, the Seebeck coefficients for the quark matter as well as for the hadronic matter are estimated within this approach. The quark matter is modeled by the two flavor Nambu–Jona–Lassinio (NJL) model and the hadronic medium is modeled by the hadron resonance gas (HRG) model with hadrons and their resonances up to a mass cutoff \({\tilde{\varLambda }}\sim 2.6\) GeV. For the estimation of thermoelectric transport coefficients, for the quark matter, we calculate the relaxation times for the quarks and antiquarks from the quark–quark and quark–antiquark scattering through meson exchange within the NJL model. On the other hand, for the hadronic medium, the relaxation times of hadrons and their resonances are estimated within a hard sphere scattering approximation. We also discuss the formalism of the thermoelectric effect in the presence of a nonvanishing external magnetic field. We give an estimation of the associated magneto-Seebeck coefficient and the Nernst coefficient for the hot and dense QCD matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. U.W. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013)

    Article  ADS  Google Scholar 

  2. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  3. P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  4. S. Gavin, Nucl. Phys. A 435, 826 (1985)

    Article  ADS  Google Scholar 

  5. A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985)

    Article  ADS  Google Scholar 

  6. A. Dobado, J.M. Torres-Rincon, Phys. Rev. D 86, 074021 (2012)

    Article  ADS  Google Scholar 

  7. C. Sasaki, K. Redlich, Phys. Rev. C 79, 055207 (2009)

    Article  ADS  Google Scholar 

  8. C. Sasaki, K. Redlich, Nucl. Phys. A 832, 62 (2010)

    Article  ADS  Google Scholar 

  9. F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B 663, 217 (2008)

    Article  ADS  Google Scholar 

  10. S.I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, JHEP 1502, 051 (2015)

    ADS  Google Scholar 

  11. A. Wiranata, M. Prakash, Nucl. Phys. A 830, 219C–222C (2009)

    Article  ADS  Google Scholar 

  12. S. Jeon, L. Yaffe, Phys. Rev. D 53, 5799–5809 (1996)

    Article  ADS  Google Scholar 

  13. P. Bozek, Phys. Rev. C 81, 034909 (2010)

    Article  ADS  Google Scholar 

  14. J.-B. Rose, J.-F. Paquet, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Nucl. Phys. A 931, 926 (2014)

    Article  ADS  Google Scholar 

  15. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  16. V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  17. H. Li, X. Sheng, Q. Wang, Phys. Rev. C 94, 044903, arXiv:1602.02223 (2016)

  18. G. Inghirami, M. Mace, Y. Hirono, L.D. Zanna, D.E. Kharzeev, M. Bleicher, Eur. Phys. J. C 80, 293, arXiv:1908.07605 (2020)

  19. G. Inghirami et al., Eur. Phys. J. C 76, 659 (2016)

    Article  ADS  Google Scholar 

  20. A. Das, S.S. Dave, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 96, 034902 (2017)

    Article  ADS  Google Scholar 

  21. K. Tuchin, Phys. Rev. C 83, 017901 (2011)

    Article  ADS  Google Scholar 

  22. K. Tuchin, Phys. Rev. C 82, 034904 (2010)

    Article  ADS  Google Scholar 

  23. M. Greif, C. Greiner, G.S. Denicol, Phys. Rev. D 93(9), 096012 (2016)

    Article  ADS  Google Scholar 

  24. M. Greif, I. Bouras, C. Greiner, Z. Xu, Phys. Rev. D 90, 094014 (2014)

    Article  ADS  Google Scholar 

  25. A. Puglisi, S. Plumari, V. Greco, Phys. Rev. D 90, 114009 (2014)

    Article  ADS  Google Scholar 

  26. W. Cassing, O. Linnyk, T. Steinert, V. Ozvenchuk, Phys. Rev. Lett. 110, 182301 (2013)

    Article  ADS  Google Scholar 

  27. T. Steinert, W. Cassing, Phys. Rev. C 89, 035203 (2014)

    Article  ADS  Google Scholar 

  28. G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, J.-I. Skullerud, JHEP 02, 186 (2015)

    Article  ADS  Google Scholar 

  29. G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Phys. Rev. Lett. 99, 022002 (2007)

    Article  ADS  Google Scholar 

  30. A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, J.-I. Skullerud, Phys. Rev. Lett. 111, 172001 (2013)

    Article  ADS  Google Scholar 

  31. S. Gupta, Phys. Lett. B 597, 57 (2004)

    Article  ADS  Google Scholar 

  32. Y. Burnier, M. Laine, Eur. Phys. J. C. 72, 1902 (2012)

    Article  ADS  Google Scholar 

  33. H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys. Rev. D 83, 034504 (2011)

    Article  ADS  Google Scholar 

  34. O. Kaczmarek, M. Muller, PoS Lattice 2013, 175 (2014)

    Google Scholar 

  35. S.-X. Qin, Phys. Lett. B 742, 358 (2015)

    Article  ADS  Google Scholar 

  36. R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, H. Berrehrah, Phys. Rev. C 88, 045204 (2013)

    Article  ADS  Google Scholar 

  37. D. Fernandez-Fraile, A.Gomez Nicola, Phys. Rev. D 73, 045025 (2006)

    Article  ADS  Google Scholar 

  38. D. Kharzeev, K. Landsteiner, A. Schmitt, H. Yee (ed.), Strongly Interacting Matter in Magnetic Field. Lecture Notes in Physics, vol. 871 (Springer, Berlin, Heidelberg, 2013)

  39. M. Greif, J.A. Fotakis, G.S. Denicol, C. Greiner, Phys. Rev. Lett. 120, 242301 (2018)

    Article  ADS  Google Scholar 

  40. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rept. 227, 321–366 (1993)

    Article  ADS  Google Scholar 

  41. A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012)

    Article  ADS  Google Scholar 

  42. P. Chakraborty, J.I. Kapusta, Phys. Rev. C 83, 014906 (2011)

    Article  ADS  Google Scholar 

  43. A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106 (2010)

    Article  ADS  Google Scholar 

  44. S. Plumari, A. Paglisi, F. Scardina, V. Greco, Phys. Rev. C 86, 054902 (2012)

    Article  ADS  Google Scholar 

  45. M.I. Gorenstein, M. Hauer, O.N. Moroz, Phys. Rev. C 77, 024911 (2008)

    Article  ADS  Google Scholar 

  46. J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. C 86, 024913 (2012)

    Article  ADS  Google Scholar 

  47. S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)

    Article  ADS  Google Scholar 

  48. S. Ghosh, A. Lahiri, S. Majumder, R. Ray, S.K. Ghosh, Phys. Rev. C 88, 068201 (2013)

    Article  ADS  Google Scholar 

  49. R. Lang, N. Kaiser, W. Weise, Eur. Phys. J. A 51, 127 (2015)

    Article  ADS  Google Scholar 

  50. S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C 89, 045201 (2014)

    Article  ADS  Google Scholar 

  51. A. Wiranata, V. Koch, M. Prakash, X.N. Wang, J. Phys. Conf. Ser. 509, 012049 (2014)

    Article  Google Scholar 

  52. A. Wiranata, M. Prakash, P. Chakraborty, Central. Eur. J. Phys. 10, 1349–1351 (2012)

    ADS  Google Scholar 

  53. A. Tawfik, M. Wahba, Ann. Phys. 522, 849–856 (2010)

    Article  Google Scholar 

  54. J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009)

    Article  ADS  Google Scholar 

  55. G. Kadam, H. Mishra, Nucl. Phys. A 934, 133147 (2015)

    Article  Google Scholar 

  56. G. Kadam, Mod. Phys. Lett. A 30(10), 1550031 (2015)

    Article  ADS  Google Scholar 

  57. G. Kadam, H. Mishra, L. Thakur, Phys. Rev. D 98, 114001 (2018)

    Article  ADS  Google Scholar 

  58. S. Ghosh, Int. J. Mod. Phys. A 29, 1450054 (2014)

    Article  ADS  Google Scholar 

  59. N. Demir, A. Wiranata, J. Phys. Conf. Ser. 535, 012018 (2014)

    Article  Google Scholar 

  60. S. Ghosh, Phys. Rev. C 90, 025202 (2014)

    Article  ADS  Google Scholar 

  61. J.-B. Rose, J.M. Torres-Rincon, A. Schafer, D.R. Oliinychenko, H. Petersen, Phys. Rev. C 97, 055204 (2018)

    Article  ADS  Google Scholar 

  62. C. Wesp, A. El, F. Reining, Z. Xu, I. Bouras, C. Greiner, Phys. Rev. C 84, 054911 (2011)

    Article  ADS  Google Scholar 

  63. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    Article  ADS  Google Scholar 

  64. G. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015)

    Article  ADS  Google Scholar 

  65. R. K. Mohapatra, H. Mishra, S. Dash, B. K. Nandi, arXiv:1901.07238

  66. P. Singha, A. Abhishek, G. Kadam, S. Ghosh, H. Mishra, J. Phys. G. 46, 015201 (2018). https://doi.org/10.1088/1361-6471/aaf256

  67. A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    Article  ADS  Google Scholar 

  68. J.R. Bhatt, A. Das, H. Mishra, Phys. Rev. D 99, 014015 (2019)

    Article  ADS  Google Scholar 

  69. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 99, 094031 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  70. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 100, 114004 (2019)

    Article  ADS  Google Scholar 

  71. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 101, 034027 (2020)

    Article  ADS  Google Scholar 

  72. J. Dey, S. Satapathy, P. Murmu, S. Ghosh, arXiv:1907.11164

  73. B. Feng, Phys. Rev. D 96, 036009 (2017)

    Article  ADS  Google Scholar 

  74. G.S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D.H. Rischke, C. Greiner, Phys. Rev. D 89, 074005 (2014)

    Article  ADS  Google Scholar 

  75. J.I. Kapusta, J.M. Torres-Rincon, Phys. Rev. C 86, 054911 (2012)

    Article  ADS  Google Scholar 

  76. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  77. T.J. Scheidemantel, C. Ambrosch-Draxi, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

    Article  ADS  Google Scholar 

  78. P. Ao, cond-mat/9505002

  79. M. Matusiak, K. Rogacki, T. Wolf, Phys. Rev. B 97, 220501(R) (2018)

    Article  ADS  Google Scholar 

  80. M. K. Hooda, C. S. Yadav, arXiv:1704.07194

  81. O. Cyr-Choiniere et al., Phys. Rev. X 7, 031042 (2017)

    Google Scholar 

  82. L.P. Gaudart, D. Berardan, J. Bobroff, N. Dragoe, Phys. Stat. Sol. (RRL) 2(4), 185–187 (2008)

    Article  Google Scholar 

  83. S. Sergeenkov, JETP Lett. 67, 650–655 (1998)

    Article  ADS  Google Scholar 

  84. K.P. Wojcik, I. Weymann, Phys. Rev. B 89, 165303 (2014)

    Article  ADS  Google Scholar 

  85. M. Wysokinski, J. Spalek, J. Appl. Phys. 113, 163905 (2013)

    Article  ADS  Google Scholar 

  86. Kangjun Seo, Sumanta Tewari, Phys. Rev. B 90, 174503 (2014)

    Article  ADS  Google Scholar 

  87. P. Dutta, A. Saha, A.M. Jayannavar, Phys. Rev. B 96, 115404 (2017)

    Article  ADS  Google Scholar 

  88. S. Kolenda, M.J. Wolf, D. Beckmann, Phys. Rev. Lett. 116, 097001 (2016)

    Article  ADS  Google Scholar 

  89. M. Shahbazi, C. Bourbonnais, Phys. Rev. B 94, 195153 (2016)

    Article  ADS  Google Scholar 

  90. A. Cantarero, F. X. Alvarez, in Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation, ed. by X. Wang, Z. M. Wang. Lect. Notes in Nanoscale Science and Technology, vol. 16. Nanoscale Thermoelectrics. https://www.springerprofessional.de/en/thermoelectric-effects-semiclassical-and-quantum-approaches-from/2030750

  91. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, vol. 45 (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04569-5

  92. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 102, 014030 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  93. A. Abhishek, A. Das, D. Kumar, H. Mishra, arXiv:2007.14757

  94. D. Dey, B. K. Patra, arXiv:2004.03149

  95. He-Xia Zhang, arXiv:2004.08767

  96. P. Singha, A. Abhishek, G. Kadam, S. Ghosh, H. Mishra, J. Phys. G 46, 015201 (2019)

    Article  ADS  Google Scholar 

  97. A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    Article  ADS  Google Scholar 

  98. B. Singh, A. Abhishek, S.K. Das, H. Mishra, Phys. Rev. D 100, 114019 (2019)

    Article  ADS  Google Scholar 

  99. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    Article  ADS  Google Scholar 

  100. R. Wolfe, G.E. Smith, Phys. Rev. 129, 1086 (1963)

    Article  ADS  Google Scholar 

  101. https://www.gsi.de/en/researchaccelerators/fair.htm

  102. http://nica.jinr.ru

  103. A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106–146 (2010)

    Article  ADS  Google Scholar 

  104. A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 915, 158–169 (2013)

    Article  ADS  Google Scholar 

  105. P. Zhuang, J. Hufner, S.P. Klevansky, L. Neise, Phys. Rev. D 51, 3728–3738 (1995)

    Article  ADS  Google Scholar 

  106. M. Albright, J.I. Kapusta, Phys. Rev. C 93(1), 014903 (2016)

    Article  ADS  Google Scholar 

  107. S.R. De Groot, W.A. Van Leeuwen, C.G. Van Weert, Relativistic Kinetic Theory. Principles and Applications (North-holland, Amsterdam, 1980)

  108. C. Cercignani, G.M. Kremer, in The Relativistic Boltzmann Equation: Theory and Applications. Progress in Mathematical Physics book series, vol. 22 (PMP)

  109. M. Asakawa, A. Majumder, B. Muller, Phys. Rev. C 81, 064912 (2010)

    Article  ADS  Google Scholar 

  110. L. Landau, E. Lifshitz, Electrodynamics of Continuous Media, Sect. 58 (Pergamon Press, NY, 1984)

  111. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999)

    MATH  Google Scholar 

  112. V. Roy, S. Pu, L. Rezzolla, D. Rischke, Phys. Lett. B 750, 45–52 (2015)

    Article  ADS  Google Scholar 

  113. S.M.A. Tabatabaee, N. Sadooghi, Phys. Rev. D 96, 116008, arXiv:1705.00536 (2017)

  114. M. Shokri, N. Sadooghi, J. High Energ. Phys. 2018, 181, arXiv:1807.09487 (2018)

  115. S.M.A. Tabatabaee, N. Sadooghi, Phys. Rev. D 101, 076022, arXiv:2003.01686 (2020)

  116. Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, H. Shirai, Jpn. J. Appl. Phys. 43, 35 (2004)

    Article  ADS  Google Scholar 

  117. P. Deb, G. Kadam, H. Mishra, Phys. Rev. D 94, 094002 (2016)

    Article  ADS  Google Scholar 

  118. M. Buballa, Phys. Rept. 407, 205–376 (2005)

    Article  ADS  Google Scholar 

  119. P. Arnold, G.D. Moore, L. Yaffe, JHEP 11, 001 (2000)

    Article  ADS  Google Scholar 

  120. M. Heffernan, S. Jeon, C. Gale, Phys. Rev. C 102, 034906 (2020)

    Article  ADS  Google Scholar 

  121. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013

  122. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  123. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001)

    Article  ADS  Google Scholar 

  124. K. Cleymans, Redlich, Phys. Rev. C 60, 054908 (1999)

    Article  ADS  Google Scholar 

  125. F. Becattini et al., Phys. Rev. C 64, 024901 (2001)

    Article  ADS  Google Scholar 

  126. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)

    Article  ADS  Google Scholar 

  127. A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 14 (2009)

    Article  Google Scholar 

  128. R. Dashen, S. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969)

    Article  ADS  Google Scholar 

  129. R. Dashen, R. Rajaraman, Phys. Rev. D 10, 694 (1974)

    Article  ADS  Google Scholar 

  130. F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67–74 (2003)

    Article  ADS  Google Scholar 

  131. P. Braun-Munzinger, V. Koch, T. Schafer, J. Stachel, Phys. Rept. 621, 76 (2016)

    Article  ADS  Google Scholar 

  132. M. Nahrgang, M. Bluhm, P. Alba, R. Bellwied, C. Ratti, Eur. Phys. J. C 75(12), 573 (2015)

    Article  ADS  Google Scholar 

  133. A. Bhattacharyya, S. Das, S.K. Ghosh, R. Ray, S. Samanta, Phys. Rev. C 90(3), 034909 (2014)

    Article  ADS  Google Scholar 

  134. P. Garg, D.K. Mishra, P.K. Netrakanti, B. Mohanty, A.K. Mohanty, B.K. Singh, N. Xu, Phys. Lett. B 726, 691–696 (2013)

    Article  ADS  Google Scholar 

  135. A. Bazavov et al., Phys. Rev. D 86, 034509 (2012)

    Article  ADS  Google Scholar 

  136. V.V. Begun, M.I. Gorenstein, M. Hauer, V.P. Konchakovski, O.S. Zozulya, Phys. Rev. C 74, 044903 (2006)

    Article  ADS  Google Scholar 

  137. R.K. Mohapatra, Phys. Rev. C 99, 024902 (2019)

    Article  ADS  Google Scholar 

  138. D.H. Rischke, M.I. Gorenstein, H. Stocker, W. Greiner, Z. Phys. C 51, 485–489 (1991)

    Article  Google Scholar 

  139. A. Majumder, B. Muller, Phys. Rev. Lett. 105, 252002 (2010)

    Article  ADS  Google Scholar 

  140. P. Gondolo, G. Gelmini, Nucl. Phys. B 360, 145 (1991)

    Article  ADS  Google Scholar 

  141. C. Amsler et al., [Particle Data Group], Phys. Lett. B 667, 1 (2008)

  142. M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90(2), 024915 (2014)

    Article  ADS  Google Scholar 

  143. P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)

    Article  ADS  Google Scholar 

  144. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, PRC 73, 034905 (2006)

    Article  ADS  Google Scholar 

  145. X.G. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010)

    Article  ADS  Google Scholar 

  146. S. Y.F. Liu, Y. Yin, arXiv:2006.12421

  147. M. Albright, in Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities. https://inspirehep.net/literature/1444309

Download references

Acknowledgements

The idea of thermoelectric coefficient in the context of strongly interacting matter arose during a visit of one of the author’s (H.M.) to the research group of Prof. Ajit M. Srivastava at Institute of Physics Bhubaneswar. The authors would like to thank Prof. Ajit. M. Srivastava for originally suggesting the idea of thermoelectric coefficient in this context. The authors would like to thank Jitesh R. Bhatt, Ranjita K. Mohapatra, Aman Abhishek, and Deepak Kumar for useful discussions and collaboration in earlier investigations on this topic with the authors. The work of A.D. is supported by the Polish National Science Center Grants No. 2018/30/E/ ST2/00432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmaya Mishra.

Appendix A: Conservation of energy momentum tensor and baryon current in a quasiparticle approach

Appendix A: Conservation of energy momentum tensor and baryon current in a quasiparticle approach

Here, we show the conservation of energy momentum tensor and the baryon number conservation for quasiparticles. Similar calculation can also be performed for free particles. Let us note that the energy, momentum, and baryon number etc. are conserved during the collisions between the quasi particles—here, the constituent quarks. Let \(\chi _a\) be any such conserved quantity (e.g., baryon number, energy, momentum, etc.) associated with the particle \(`a'\). For any two body scattering, e.g., \(a+b\rightarrow c+d\) as considered here, we will have \(\chi _a+\chi _b=\chi _c+\chi _d\). It can be shown that for any conserved quantity \(\chi _a\), we have [106, 107, 147]:

$$\begin{aligned} \sum _a \int d\Gamma _a \chi _a{{{\mathcal {C}}}}_a = 0, \end{aligned}$$
(A.1)

where \({{{\mathcal {C}}}}_a\) is the collision integral in the Boltzmann equation and \(d\Gamma \equiv \gamma _g d^3 p/(2 \pi )^3\). \(\gamma _g\) is the degeneracy factor including color degree of freedom, flavor degree of freedom, and spin degree of freedom. Using the Boltzmann equation, the collision integral for the quasiparticle can be given by:

$$\begin{aligned} {{{\mathcal {C}}}}_a=\frac{p^\mu _a}{\epsilon _a}\partial _\mu f_a+(\partial ^i \epsilon _a)\frac{\partial f_a}{\partial p^i_a}, \end{aligned}$$
(A.2)

where \(\epsilon =\sqrt{\mathbf {p}^2+M^2}\) is single (quasi) particle energy which, in general, depends upon the mean field/the quark condensate. Here, we have not included the electromagnetic field contribution for simplicity, but can be included in general. Next, one can substitute the expression for \({{{\mathcal {C}}}}_a\) as given in Eq. (A.2) into Eq. (A.1) to simplify further. Of the two terms in \({{{\mathcal {C}}}}_a\), one can integrate by parts with respect to \(x^{\mu }\equiv (t,\mathbf {x})\) in the first term and with respect to \(\mathbf {p}\) in the second term after substituting in Eq. (A.1). After some manipulations, this leads to:

$$\begin{aligned}&\partial _\mu \bigg (\sum _a\int d\Gamma _a f_a\frac{p^\mu _a\chi _a}{\epsilon _a}\bigg )\nonumber \\&-\sum _a\int d\Gamma _a f_a\bigg [\frac{ p^\mu _a}{\epsilon _a}\partial _\mu \chi _a +\partial ^i \epsilon _a \frac{\partial \chi _a}{\partial p_a^i}\bigg ]=0. \end{aligned}$$
(A.3)

The baryonic current can be expressed as:

$$\begin{aligned} J^\mu _b=\sum _a b_a\int d\Gamma _a\frac{p^\mu _a}{\epsilon _a} f_a; \end{aligned}$$
(A.4)

\(b^a\) is the baryon number and \(b^a =\pm 1\) for particles and antiparticles, respectively. Let us first discuss the conservation of baryon current. In Eq. (A.3), let \(\chi _a=b_a\), the baryon number. Then, all the derivatives of \(\chi _a\) vanish and we have from Eq. (A.3):

$$\begin{aligned} \partial _\mu \left( \sum _ab_a\int d\Gamma _a f_a \frac{p^\mu }{\epsilon _a}\right) =\partial _\mu J^\mu _b = 0. \end{aligned}$$
(A.5)

Next, we write down the energy momentum tensor in terms of the distribution functions and the mean fields as was done in Ref. [117] for the two flavor NJL model:

$$\begin{aligned} T^{\mu \nu }=\sum _a \int d\Gamma _a \frac{p_a^\mu p_a^\nu }{\epsilon _a} f_a+g^{\mu \nu } V, \end{aligned}$$
(A.6)

where V represents the vacuum energy density contribution from the mean fields or equivalently the constituent quark mass, that is:

$$\begin{aligned} V=-\int d \Gamma \sqrt{ \mathbf {p}^2+M^2}+\frac{(M-m_0)^2}{4G}. \end{aligned}$$
(A.7)

Here, M is the consistent quark mass and G is the scalar coupling of the NJL model. To get the conservation of the energy momentum tensor, one can take \(\chi _a=\epsilon _a\) and \(\chi _a=p^i_a\) in Eq. (A.3) to write down the conservation equation of energy, and momentum, respectively, and can be combined to get energy momentum conservation equation as:

$$\begin{aligned}&\partial _\mu \left( \sum _a\int d\Gamma _a f_a\frac{p^\mu p^\nu }{\epsilon _a}\right) \nonumber \\&\quad -\sum _a \int d\Gamma _a f_a\partial ^\nu \epsilon _a=0. \end{aligned}$$
(A.8)

Next, let us note that from Eq. (A.7), we have:

$$\begin{aligned} \partial ^\nu V&=\frac{\partial V}{\partial M}\partial ^\nu M \nonumber \\&=\bigg [-\int d\Gamma _a \frac{M}{\epsilon _a} +\frac{M-m_0}{2G}\bigg ]\partial ^\nu M. \end{aligned}$$
(A.9)

Using the gap equation:

$$\begin{aligned} \frac{M-m_0}{2 G}=\int d\Gamma _a \frac{M}{\epsilon _a}-\sum _a \int d\Gamma _a \frac{M}{\epsilon _a}f_a; \end{aligned}$$
(A.10)

for the constituent quarks in the right-hand side of Eq. (A.9), we obtain:

$$\begin{aligned} \partial ^\nu V&=-\sum _a\int d\Gamma _a \frac{M}{\epsilon _a} f_a \partial ^\nu M \nonumber \\&=-\sum _a\int d\Gamma _a f_a \partial ^\nu \epsilon ^a. \end{aligned}$$
(A.11)

Using Eq. (A.11) for the second term in Eq. (A.8), we have:

$$\begin{aligned} 0=\partial _\mu \left( \sum _a\int d\Gamma _a f_a\frac{p^\mu p^\nu }{\epsilon _a}\right) +\partial ^\nu V\equiv \partial _\mu T^{\mu \nu }, \end{aligned}$$
(A.12)

where we have used the definition of \(T^{\mu \nu }\) in terms of the microscopic distribution functions and mean field as given in Eq. (A.6). Equations  (A.5) and  (A.12) thus demonstrate the macroscopic current and energy momentum conservation, where \(J^\mu _b\) and \(T^{\mu \nu }\) defined in terms of microscopic distribution functions and mean fields. Furthermore, for free particles (in the absence of a medium-dependent mass), \(\partial _{\mu }\epsilon = 0\). Therefore, for free particles, Eq. (A.8) gives us the conservation of energy momentum tensor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Mishra, H. Thermoelectric transport coefficients of hot and dense QCD matter. Eur. Phys. J. Spec. Top. 230, 607–634 (2021). https://doi.org/10.1140/epjs/s11734-021-00022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00022-2

Navigation