Skip to main content

Thermoelectric transport coefficients of hot and dense QCD matter


The presence of a nonvanishing thermal gradient and/or a chemical potential gradient in a conducting medium can lead to an electric field—an effect known as thermoelectric effect or Seebeck effect. We discuss here the thermoelectric effects for hot and dense strongly interacting matter within the framework of relativistic Boltzmann equation in the relaxation time approximation. In the context of heavy-ion collisions, the Seebeck coefficients for the quark matter as well as for the hadronic matter are estimated within this approach. The quark matter is modeled by the two flavor Nambu–Jona–Lassinio (NJL) model and the hadronic medium is modeled by the hadron resonance gas (HRG) model with hadrons and their resonances up to a mass cutoff \({\tilde{\varLambda }}\sim 2.6\) GeV. For the estimation of thermoelectric transport coefficients, for the quark matter, we calculate the relaxation times for the quarks and antiquarks from the quark–quark and quark–antiquark scattering through meson exchange within the NJL model. On the other hand, for the hadronic medium, the relaxation times of hadrons and their resonances are estimated within a hard sphere scattering approximation. We also discuss the formalism of the thermoelectric effect in the presence of a nonvanishing external magnetic field. We give an estimation of the associated magneto-Seebeck coefficient and the Nernst coefficient for the hot and dense QCD matter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    U.W. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013)

    ADS  Google Scholar 

  2. 2.

    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    ADS  Google Scholar 

  3. 3.

    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    ADS  Google Scholar 

  4. 4.

    S. Gavin, Nucl. Phys. A 435, 826 (1985)

    ADS  Google Scholar 

  5. 5.

    A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985)

    ADS  Google Scholar 

  6. 6.

    A. Dobado, J.M. Torres-Rincon, Phys. Rev. D 86, 074021 (2012)

    ADS  Google Scholar 

  7. 7.

    C. Sasaki, K. Redlich, Phys. Rev. C 79, 055207 (2009)

    ADS  Google Scholar 

  8. 8.

    C. Sasaki, K. Redlich, Nucl. Phys. A 832, 62 (2010)

    ADS  Google Scholar 

  9. 9.

    F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B 663, 217 (2008)

    ADS  Google Scholar 

  10. 10.

    S.I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, JHEP 1502, 051 (2015)

    ADS  Google Scholar 

  11. 11.

    A. Wiranata, M. Prakash, Nucl. Phys. A 830, 219C–222C (2009)

    ADS  Google Scholar 

  12. 12.

    S. Jeon, L. Yaffe, Phys. Rev. D 53, 5799–5809 (1996)

    ADS  Google Scholar 

  13. 13.

    P. Bozek, Phys. Rev. C 81, 034909 (2010)

    ADS  Google Scholar 

  14. 14.

    J.-B. Rose, J.-F. Paquet, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Nucl. Phys. A 931, 926 (2014)

    ADS  Google Scholar 

  15. 15.

    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  16. 16.

    V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  17. 17.

    H. Li, X. Sheng, Q. Wang, Phys. Rev. C 94, 044903, arXiv:1602.02223 (2016)

  18. 18.

    G. Inghirami, M. Mace, Y. Hirono, L.D. Zanna, D.E. Kharzeev, M. Bleicher, Eur. Phys. J. C 80, 293, arXiv:1908.07605 (2020)

  19. 19.

    G. Inghirami et al., Eur. Phys. J. C 76, 659 (2016)

    ADS  Google Scholar 

  20. 20.

    A. Das, S.S. Dave, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 96, 034902 (2017)

    ADS  Google Scholar 

  21. 21.

    K. Tuchin, Phys. Rev. C 83, 017901 (2011)

    ADS  Google Scholar 

  22. 22.

    K. Tuchin, Phys. Rev. C 82, 034904 (2010)

    ADS  Google Scholar 

  23. 23.

    M. Greif, C. Greiner, G.S. Denicol, Phys. Rev. D 93(9), 096012 (2016)

    ADS  Google Scholar 

  24. 24.

    M. Greif, I. Bouras, C. Greiner, Z. Xu, Phys. Rev. D 90, 094014 (2014)

    ADS  Google Scholar 

  25. 25.

    A. Puglisi, S. Plumari, V. Greco, Phys. Rev. D 90, 114009 (2014)

    ADS  Google Scholar 

  26. 26.

    W. Cassing, O. Linnyk, T. Steinert, V. Ozvenchuk, Phys. Rev. Lett. 110, 182301 (2013)

    ADS  Google Scholar 

  27. 27.

    T. Steinert, W. Cassing, Phys. Rev. C 89, 035203 (2014)

    ADS  Google Scholar 

  28. 28.

    G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, J.-I. Skullerud, JHEP 02, 186 (2015)

    ADS  Google Scholar 

  29. 29.

    G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Phys. Rev. Lett. 99, 022002 (2007)

    ADS  Google Scholar 

  30. 30.

    A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, J.-I. Skullerud, Phys. Rev. Lett. 111, 172001 (2013)

    ADS  Google Scholar 

  31. 31.

    S. Gupta, Phys. Lett. B 597, 57 (2004)

    ADS  Google Scholar 

  32. 32.

    Y. Burnier, M. Laine, Eur. Phys. J. C. 72, 1902 (2012)

    ADS  Google Scholar 

  33. 33.

    H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys. Rev. D 83, 034504 (2011)

    ADS  Google Scholar 

  34. 34.

    O. Kaczmarek, M. Muller, PoS Lattice 2013, 175 (2014)

    Google Scholar 

  35. 35.

    S.-X. Qin, Phys. Lett. B 742, 358 (2015)

    ADS  Google Scholar 

  36. 36.

    R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, H. Berrehrah, Phys. Rev. C 88, 045204 (2013)

    ADS  Google Scholar 

  37. 37.

    D. Fernandez-Fraile, A.Gomez Nicola, Phys. Rev. D 73, 045025 (2006)

    ADS  Google Scholar 

  38. 38.

    D. Kharzeev, K. Landsteiner, A. Schmitt, H. Yee (ed.), Strongly Interacting Matter in Magnetic Field. Lecture Notes in Physics, vol. 871 (Springer, Berlin, Heidelberg, 2013)

  39. 39.

    M. Greif, J.A. Fotakis, G.S. Denicol, C. Greiner, Phys. Rev. Lett. 120, 242301 (2018)

    ADS  Google Scholar 

  40. 40.

    M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rept. 227, 321–366 (1993)

    ADS  Google Scholar 

  41. 41.

    A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012)

    ADS  Google Scholar 

  42. 42.

    P. Chakraborty, J.I. Kapusta, Phys. Rev. C 83, 014906 (2011)

    ADS  Google Scholar 

  43. 43.

    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106 (2010)

    ADS  Google Scholar 

  44. 44.

    S. Plumari, A. Paglisi, F. Scardina, V. Greco, Phys. Rev. C 86, 054902 (2012)

    ADS  Google Scholar 

  45. 45.

    M.I. Gorenstein, M. Hauer, O.N. Moroz, Phys. Rev. C 77, 024911 (2008)

    ADS  Google Scholar 

  46. 46.

    J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. C 86, 024913 (2012)

    ADS  Google Scholar 

  47. 47.

    S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)

    ADS  Google Scholar 

  48. 48.

    S. Ghosh, A. Lahiri, S. Majumder, R. Ray, S.K. Ghosh, Phys. Rev. C 88, 068201 (2013)

    ADS  Google Scholar 

  49. 49.

    R. Lang, N. Kaiser, W. Weise, Eur. Phys. J. A 51, 127 (2015)

    ADS  Google Scholar 

  50. 50.

    S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C 89, 045201 (2014)

    ADS  Google Scholar 

  51. 51.

    A. Wiranata, V. Koch, M. Prakash, X.N. Wang, J. Phys. Conf. Ser. 509, 012049 (2014)

    Google Scholar 

  52. 52.

    A. Wiranata, M. Prakash, P. Chakraborty, Central. Eur. J. Phys. 10, 1349–1351 (2012)

    ADS  Google Scholar 

  53. 53.

    A. Tawfik, M. Wahba, Ann. Phys. 522, 849–856 (2010)

    Google Scholar 

  54. 54.

    J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009)

    ADS  Google Scholar 

  55. 55.

    G. Kadam, H. Mishra, Nucl. Phys. A 934, 133147 (2015)

    Google Scholar 

  56. 56.

    G. Kadam, Mod. Phys. Lett. A 30(10), 1550031 (2015)

    ADS  Google Scholar 

  57. 57.

    G. Kadam, H. Mishra, L. Thakur, Phys. Rev. D 98, 114001 (2018)

    ADS  Google Scholar 

  58. 58.

    S. Ghosh, Int. J. Mod. Phys. A 29, 1450054 (2014)

    ADS  Google Scholar 

  59. 59.

    N. Demir, A. Wiranata, J. Phys. Conf. Ser. 535, 012018 (2014)

    Google Scholar 

  60. 60.

    S. Ghosh, Phys. Rev. C 90, 025202 (2014)

    ADS  Google Scholar 

  61. 61.

    J.-B. Rose, J.M. Torres-Rincon, A. Schafer, D.R. Oliinychenko, H. Petersen, Phys. Rev. C 97, 055204 (2018)

    ADS  Google Scholar 

  62. 62.

    C. Wesp, A. El, F. Reining, Z. Xu, I. Bouras, C. Greiner, Phys. Rev. C 84, 054911 (2011)

    ADS  Google Scholar 

  63. 63.

    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    ADS  Google Scholar 

  64. 64.

    G. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015)

    ADS  Google Scholar 

  65. 65.

    R. K. Mohapatra, H. Mishra, S. Dash, B. K. Nandi, arXiv:1901.07238

  66. 66.

    P. Singha, A. Abhishek, G. Kadam, S. Ghosh, H. Mishra, J. Phys. G. 46, 015201 (2018).

  67. 67.

    A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    ADS  Google Scholar 

  68. 68.

    J.R. Bhatt, A. Das, H. Mishra, Phys. Rev. D 99, 014015 (2019)

    ADS  Google Scholar 

  69. 69.

    A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 99, 094031 (2019)

    ADS  MathSciNet  Google Scholar 

  70. 70.

    A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 100, 114004 (2019)

    ADS  Google Scholar 

  71. 71.

    A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 101, 034027 (2020)

    ADS  Google Scholar 

  72. 72.

    J. Dey, S. Satapathy, P. Murmu, S. Ghosh, arXiv:1907.11164

  73. 73.

    B. Feng, Phys. Rev. D 96, 036009 (2017)

    ADS  Google Scholar 

  74. 74.

    G.S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D.H. Rischke, C. Greiner, Phys. Rev. D 89, 074005 (2014)

    ADS  Google Scholar 

  75. 75.

    J.I. Kapusta, J.M. Torres-Rincon, Phys. Rev. C 86, 054911 (2012)

    ADS  Google Scholar 

  76. 76.

    H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  77. 77.

    T.J. Scheidemantel, C. Ambrosch-Draxi, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

    ADS  Google Scholar 

  78. 78.

    P. Ao, cond-mat/9505002

  79. 79.

    M. Matusiak, K. Rogacki, T. Wolf, Phys. Rev. B 97, 220501(R) (2018)

    ADS  Google Scholar 

  80. 80.

    M. K. Hooda, C. S. Yadav, arXiv:1704.07194

  81. 81.

    O. Cyr-Choiniere et al., Phys. Rev. X 7, 031042 (2017)

    Google Scholar 

  82. 82.

    L.P. Gaudart, D. Berardan, J. Bobroff, N. Dragoe, Phys. Stat. Sol. (RRL) 2(4), 185–187 (2008)

    Google Scholar 

  83. 83.

    S. Sergeenkov, JETP Lett. 67, 650–655 (1998)

    ADS  Google Scholar 

  84. 84.

    K.P. Wojcik, I. Weymann, Phys. Rev. B 89, 165303 (2014)

    ADS  Google Scholar 

  85. 85.

    M. Wysokinski, J. Spalek, J. Appl. Phys. 113, 163905 (2013)

    ADS  Google Scholar 

  86. 86.

    Kangjun Seo, Sumanta Tewari, Phys. Rev. B 90, 174503 (2014)

    ADS  Google Scholar 

  87. 87.

    P. Dutta, A. Saha, A.M. Jayannavar, Phys. Rev. B 96, 115404 (2017)

    ADS  Google Scholar 

  88. 88.

    S. Kolenda, M.J. Wolf, D. Beckmann, Phys. Rev. Lett. 116, 097001 (2016)

    ADS  Google Scholar 

  89. 89.

    M. Shahbazi, C. Bourbonnais, Phys. Rev. B 94, 195153 (2016)

    ADS  Google Scholar 

  90. 90.

    A. Cantarero, F. X. Alvarez, in Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation, ed. by X. Wang, Z. M. Wang. Lect. Notes in Nanoscale Science and Technology, vol. 16. Nanoscale Thermoelectrics.

  91. 91.

    G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, vol. 45 (Springer, Berlin, 2001).

  92. 92.

    A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 102, 014030 (2020)

    ADS  MathSciNet  Google Scholar 

  93. 93.

    A. Abhishek, A. Das, D. Kumar, H. Mishra, arXiv:2007.14757

  94. 94.

    D. Dey, B. K. Patra, arXiv:2004.03149

  95. 95.

    He-Xia Zhang, arXiv:2004.08767

  96. 96.

    P. Singha, A. Abhishek, G. Kadam, S. Ghosh, H. Mishra, J. Phys. G 46, 015201 (2019)

    ADS  Google Scholar 

  97. 97.

    A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    ADS  Google Scholar 

  98. 98.

    B. Singh, A. Abhishek, S.K. Das, H. Mishra, Phys. Rev. D 100, 114019 (2019)

    ADS  Google Scholar 

  99. 99.

    C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    ADS  Google Scholar 

  100. 100.

    R. Wolfe, G.E. Smith, Phys. Rev. 129, 1086 (1963)

    ADS  Google Scholar 

  101. 101.

  102. 102.

  103. 103.

    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106–146 (2010)

    ADS  Google Scholar 

  104. 104.

    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 915, 158–169 (2013)

    ADS  Google Scholar 

  105. 105.

    P. Zhuang, J. Hufner, S.P. Klevansky, L. Neise, Phys. Rev. D 51, 3728–3738 (1995)

    ADS  Google Scholar 

  106. 106.

    M. Albright, J.I. Kapusta, Phys. Rev. C 93(1), 014903 (2016)

    ADS  Google Scholar 

  107. 107.

    S.R. De Groot, W.A. Van Leeuwen, C.G. Van Weert, Relativistic Kinetic Theory. Principles and Applications (North-holland, Amsterdam, 1980)

  108. 108.

    C. Cercignani, G.M. Kremer, in The Relativistic Boltzmann Equation: Theory and Applications. Progress in Mathematical Physics book series, vol. 22 (PMP)

  109. 109.

    M. Asakawa, A. Majumder, B. Muller, Phys. Rev. C 81, 064912 (2010)

    ADS  Google Scholar 

  110. 110.

    L. Landau, E. Lifshitz, Electrodynamics of Continuous Media, Sect. 58 (Pergamon Press, NY, 1984)

  111. 111.

    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999)

    MATH  Google Scholar 

  112. 112.

    V. Roy, S. Pu, L. Rezzolla, D. Rischke, Phys. Lett. B 750, 45–52 (2015)

    ADS  Google Scholar 

  113. 113.

    S.M.A. Tabatabaee, N. Sadooghi, Phys. Rev. D 96, 116008, arXiv:1705.00536 (2017)

  114. 114.

    M. Shokri, N. Sadooghi, J. High Energ. Phys. 2018, 181, arXiv:1807.09487 (2018)

  115. 115.

    S.M.A. Tabatabaee, N. Sadooghi, Phys. Rev. D 101, 076022, arXiv:2003.01686 (2020)

  116. 116.

    Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, H. Shirai, Jpn. J. Appl. Phys. 43, 35 (2004)

    ADS  Google Scholar 

  117. 117.

    P. Deb, G. Kadam, H. Mishra, Phys. Rev. D 94, 094002 (2016)

    ADS  Google Scholar 

  118. 118.

    M. Buballa, Phys. Rept. 407, 205–376 (2005)

    ADS  Google Scholar 

  119. 119.

    P. Arnold, G.D. Moore, L. Yaffe, JHEP 11, 001 (2000)

    ADS  Google Scholar 

  120. 120.

    M. Heffernan, S. Jeon, C. Gale, Phys. Rev. C 102, 034906 (2020)

    ADS  Google Scholar 

  121. 121.

    P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013

  122. 122.

    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    ADS  Google Scholar 

  123. 123.

    P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001)

    ADS  Google Scholar 

  124. 124.

    K. Cleymans, Redlich, Phys. Rev. C 60, 054908 (1999)

    ADS  Google Scholar 

  125. 125.

    F. Becattini et al., Phys. Rev. C 64, 024901 (2001)

    ADS  Google Scholar 

  126. 126.

    Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)

    ADS  Google Scholar 

  127. 127.

    A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 14 (2009)

    Google Scholar 

  128. 128.

    R. Dashen, S. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969)

    ADS  Google Scholar 

  129. 129.

    R. Dashen, R. Rajaraman, Phys. Rev. D 10, 694 (1974)

    ADS  Google Scholar 

  130. 130.

    F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67–74 (2003)

    ADS  Google Scholar 

  131. 131.

    P. Braun-Munzinger, V. Koch, T. Schafer, J. Stachel, Phys. Rept. 621, 76 (2016)

    ADS  Google Scholar 

  132. 132.

    M. Nahrgang, M. Bluhm, P. Alba, R. Bellwied, C. Ratti, Eur. Phys. J. C 75(12), 573 (2015)

    ADS  Google Scholar 

  133. 133.

    A. Bhattacharyya, S. Das, S.K. Ghosh, R. Ray, S. Samanta, Phys. Rev. C 90(3), 034909 (2014)

    ADS  Google Scholar 

  134. 134.

    P. Garg, D.K. Mishra, P.K. Netrakanti, B. Mohanty, A.K. Mohanty, B.K. Singh, N. Xu, Phys. Lett. B 726, 691–696 (2013)

    ADS  Google Scholar 

  135. 135.

    A. Bazavov et al., Phys. Rev. D 86, 034509 (2012)

    ADS  Google Scholar 

  136. 136.

    V.V. Begun, M.I. Gorenstein, M. Hauer, V.P. Konchakovski, O.S. Zozulya, Phys. Rev. C 74, 044903 (2006)

    ADS  Google Scholar 

  137. 137.

    R.K. Mohapatra, Phys. Rev. C 99, 024902 (2019)

    ADS  Google Scholar 

  138. 138.

    D.H. Rischke, M.I. Gorenstein, H. Stocker, W. Greiner, Z. Phys. C 51, 485–489 (1991)

    Google Scholar 

  139. 139.

    A. Majumder, B. Muller, Phys. Rev. Lett. 105, 252002 (2010)

    ADS  Google Scholar 

  140. 140.

    P. Gondolo, G. Gelmini, Nucl. Phys. B 360, 145 (1991)

    ADS  Google Scholar 

  141. 141.

    C. Amsler et al., [Particle Data Group], Phys. Lett. B 667, 1 (2008)

  142. 142.

    M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90(2), 024915 (2014)

    ADS  Google Scholar 

  143. 143.

    P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)

    ADS  Google Scholar 

  144. 144.

    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, PRC 73, 034905 (2006)

    ADS  Google Scholar 

  145. 145.

    X.G. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010)

    ADS  Google Scholar 

  146. 146.

    S. Y.F. Liu, Y. Yin, arXiv:2006.12421

  147. 147.

    M. Albright, in Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities.

Download references


The idea of thermoelectric coefficient in the context of strongly interacting matter arose during a visit of one of the author’s (H.M.) to the research group of Prof. Ajit M. Srivastava at Institute of Physics Bhubaneswar. The authors would like to thank Prof. Ajit. M. Srivastava for originally suggesting the idea of thermoelectric coefficient in this context. The authors would like to thank Jitesh R. Bhatt, Ranjita K. Mohapatra, Aman Abhishek, and Deepak Kumar for useful discussions and collaboration in earlier investigations on this topic with the authors. The work of A.D. is supported by the Polish National Science Center Grants No. 2018/30/E/ ST2/00432.

Author information



Corresponding author

Correspondence to Hiranmaya Mishra.

Appendix A: Conservation of energy momentum tensor and baryon current in a quasiparticle approach

Appendix A: Conservation of energy momentum tensor and baryon current in a quasiparticle approach

Here, we show the conservation of energy momentum tensor and the baryon number conservation for quasiparticles. Similar calculation can also be performed for free particles. Let us note that the energy, momentum, and baryon number etc. are conserved during the collisions between the quasi particles—here, the constituent quarks. Let \(\chi _a\) be any such conserved quantity (e.g., baryon number, energy, momentum, etc.) associated with the particle \(`a'\). For any two body scattering, e.g., \(a+b\rightarrow c+d\) as considered here, we will have \(\chi _a+\chi _b=\chi _c+\chi _d\). It can be shown that for any conserved quantity \(\chi _a\), we have [106, 107, 147]:

$$\begin{aligned} \sum _a \int d\Gamma _a \chi _a{{{\mathcal {C}}}}_a = 0, \end{aligned}$$

where \({{{\mathcal {C}}}}_a\) is the collision integral in the Boltzmann equation and \(d\Gamma \equiv \gamma _g d^3 p/(2 \pi )^3\). \(\gamma _g\) is the degeneracy factor including color degree of freedom, flavor degree of freedom, and spin degree of freedom. Using the Boltzmann equation, the collision integral for the quasiparticle can be given by:

$$\begin{aligned} {{{\mathcal {C}}}}_a=\frac{p^\mu _a}{\epsilon _a}\partial _\mu f_a+(\partial ^i \epsilon _a)\frac{\partial f_a}{\partial p^i_a}, \end{aligned}$$

where \(\epsilon =\sqrt{\mathbf {p}^2+M^2}\) is single (quasi) particle energy which, in general, depends upon the mean field/the quark condensate. Here, we have not included the electromagnetic field contribution for simplicity, but can be included in general. Next, one can substitute the expression for \({{{\mathcal {C}}}}_a\) as given in Eq. (A.2) into Eq. (A.1) to simplify further. Of the two terms in \({{{\mathcal {C}}}}_a\), one can integrate by parts with respect to \(x^{\mu }\equiv (t,\mathbf {x})\) in the first term and with respect to \(\mathbf {p}\) in the second term after substituting in Eq. (A.1). After some manipulations, this leads to:

$$\begin{aligned}&\partial _\mu \bigg (\sum _a\int d\Gamma _a f_a\frac{p^\mu _a\chi _a}{\epsilon _a}\bigg )\nonumber \\&-\sum _a\int d\Gamma _a f_a\bigg [\frac{ p^\mu _a}{\epsilon _a}\partial _\mu \chi _a +\partial ^i \epsilon _a \frac{\partial \chi _a}{\partial p_a^i}\bigg ]=0. \end{aligned}$$

The baryonic current can be expressed as:

$$\begin{aligned} J^\mu _b=\sum _a b_a\int d\Gamma _a\frac{p^\mu _a}{\epsilon _a} f_a; \end{aligned}$$

\(b^a\) is the baryon number and \(b^a =\pm 1\) for particles and antiparticles, respectively. Let us first discuss the conservation of baryon current. In Eq. (A.3), let \(\chi _a=b_a\), the baryon number. Then, all the derivatives of \(\chi _a\) vanish and we have from Eq. (A.3):

$$\begin{aligned} \partial _\mu \left( \sum _ab_a\int d\Gamma _a f_a \frac{p^\mu }{\epsilon _a}\right) =\partial _\mu J^\mu _b = 0. \end{aligned}$$

Next, we write down the energy momentum tensor in terms of the distribution functions and the mean fields as was done in Ref. [117] for the two flavor NJL model:

$$\begin{aligned} T^{\mu \nu }=\sum _a \int d\Gamma _a \frac{p_a^\mu p_a^\nu }{\epsilon _a} f_a+g^{\mu \nu } V, \end{aligned}$$

where V represents the vacuum energy density contribution from the mean fields or equivalently the constituent quark mass, that is:

$$\begin{aligned} V=-\int d \Gamma \sqrt{ \mathbf {p}^2+M^2}+\frac{(M-m_0)^2}{4G}. \end{aligned}$$

Here, M is the consistent quark mass and G is the scalar coupling of the NJL model. To get the conservation of the energy momentum tensor, one can take \(\chi _a=\epsilon _a\) and \(\chi _a=p^i_a\) in Eq. (A.3) to write down the conservation equation of energy, and momentum, respectively, and can be combined to get energy momentum conservation equation as:

$$\begin{aligned}&\partial _\mu \left( \sum _a\int d\Gamma _a f_a\frac{p^\mu p^\nu }{\epsilon _a}\right) \nonumber \\&\quad -\sum _a \int d\Gamma _a f_a\partial ^\nu \epsilon _a=0. \end{aligned}$$

Next, let us note that from Eq. (A.7), we have:

$$\begin{aligned} \partial ^\nu V&=\frac{\partial V}{\partial M}\partial ^\nu M \nonumber \\&=\bigg [-\int d\Gamma _a \frac{M}{\epsilon _a} +\frac{M-m_0}{2G}\bigg ]\partial ^\nu M. \end{aligned}$$

Using the gap equation:

$$\begin{aligned} \frac{M-m_0}{2 G}=\int d\Gamma _a \frac{M}{\epsilon _a}-\sum _a \int d\Gamma _a \frac{M}{\epsilon _a}f_a; \end{aligned}$$

for the constituent quarks in the right-hand side of Eq. (A.9), we obtain:

$$\begin{aligned} \partial ^\nu V&=-\sum _a\int d\Gamma _a \frac{M}{\epsilon _a} f_a \partial ^\nu M \nonumber \\&=-\sum _a\int d\Gamma _a f_a \partial ^\nu \epsilon ^a. \end{aligned}$$

Using Eq. (A.11) for the second term in Eq. (A.8), we have:

$$\begin{aligned} 0=\partial _\mu \left( \sum _a\int d\Gamma _a f_a\frac{p^\mu p^\nu }{\epsilon _a}\right) +\partial ^\nu V\equiv \partial _\mu T^{\mu \nu }, \end{aligned}$$

where we have used the definition of \(T^{\mu \nu }\) in terms of the microscopic distribution functions and mean field as given in Eq. (A.6). Equations  (A.5) and  (A.12) thus demonstrate the macroscopic current and energy momentum conservation, where \(J^\mu _b\) and \(T^{\mu \nu }\) defined in terms of microscopic distribution functions and mean fields. Furthermore, for free particles (in the absence of a medium-dependent mass), \(\partial _{\mu }\epsilon = 0\). Therefore, for free particles, Eq. (A.8) gives us the conservation of energy momentum tensor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, A., Mishra, H. Thermoelectric transport coefficients of hot and dense QCD matter. Eur. Phys. J. Spec. Top. 230, 607–634 (2021).

Download citation