Skip to main content

Initial fluctuations and power spectrum of flow anisotropies in relativistic heavy-ion collisions

Abstract

Flow has emerged as a crucial probe for the properties of the thermalized medium produced in relativistic heavy-ion collisions. The evolution of initial state fluctuations leaves imprints on the power spectrum of flow coefficients. Therefore, flow coefficients are a crucial probe of initial state fluctuations arising from the parton distributions of the colliding nuclei. This has a very strong correspondence with the physics of power spectrum of cosmic microwave background radiation (CMBR) anisotropies which directly probes initial inflationary fluctuations. Much work has been done to probe these interesting interconnections, in particular, in developing techniques for the measurements of higher flow coefficients. We present a short review of these developments. The effect of initial magnetic field on these features will also be reviewed. All this acquires special importance in view of upcoming electron-ion collider which will directly probe initial parton distribution of the colliding nucleus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M.G. Alford, A. Schmitt, K. Rajagopal, T. Schafer, Rev. Mod. Phys. 80, 1455 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    Arpan Das, Shreyansh S. Dave, Somnath De, Ajit M. Srivastava, Mod. Phys. Lett. A 32, 1750170 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    ADS  Article  Google Scholar 

  4. 4.

    P.F. Kolb, P. Huovinen, U. Heinz, H. Heiselberg, Phys. Lett. B 500, 232 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    R. A. Lacey, A. Taranenko, arXiv:nucl-ex/0610029

  6. 6.

    N. Borghini, J.-Y. Ollitrault, Phys. Lett. B 642, 227 (2006)

    ADS  Article  Google Scholar 

  7. 7.

    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904 (2005), S. S. Adler al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 182301 (2003)

  9. 9.

    C. Alt et al., NA49 Collaboration. Phys. Rev. C 68, 034903 (2003)

  10. 10.

    P. Sorensen (for the STAR collaboration), J. Phys. G 34, S897 (2007)

  11. 11.

    S. Manly et al. (for PHOBOS collaboration), arXiv:nucl-ex/0702029

  12. 12.

    R. S. Hollis et al. (for PHOBOS collaboration), arXiv:nucl-ex/0707.0125

  13. 13.

    H. Sorge, Phys. Rev. Lett. 82, 2048 (1999)

    ADS  Article  Google Scholar 

  14. 14.

    R. Snellings, arXiv: 1102.3010

  15. 15.

    A.P. Mishra, R.K. Mohapatra, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 77, 064902 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    A.P. Mishra, R.K. Mohapatra, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 81, 034903 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996) https://doi.org/10.1007/s002880050141[hep-ph/9407282]

  18. 18.

    J. Barrete et al., Phys. Rev. C 55, 1420 (1997)

    ADS  Article  Google Scholar 

  19. 19.

    A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)

    ADS  Article  Google Scholar 

  20. 20.

    S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Phys. Lett. B 659, 537 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    S. Wang et al., Phys. Rev. C 44, 1091 (1991). https://doi.org/10.1103/PhysRevC.44.1091

    ADS  Article  Google Scholar 

  22. 22.

    N. Borghini, P. M. Dinh, J. Y. Ollitrault, Phys. Rev. C 64, 054901 (2001) https://doi.org/10.1103/PhysRevC.64.054901[nucl-th/0105040]

  23. 23.

    R. S. Bhalerao, J. Y. Ollitrault, Phys. Lett. B 641, 260 (2006) https://doi.org/10.1016/j.physletb.2006.08.055[nucl-th/0607009]

  24. 24.

    J.Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 80, 014904 (2009). https://doi.org/10.1103/PhysRevC.80.014904 ([arXiv:0904.2315 [nucl-ex]].)

  25. 25.

    J.P. Blaizot, in the International Conference on Matter at extreme conditions: Then and Now, held at Bose Inst., Kolkata, India, Jan. 15-17 (2014)

  26. 26.

    A. Mocsy, P. Sorensen, arXiv:1008.3381 [hep-ph]

  27. 27.

    P. Sorensen, J. Phys. G 37, 094011 (2010). https://doi.org/10.1088/0954-3899/37/9/094011 ([arXiv:1002.4878 [nucl-ex]].)

  28. 28.

    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) Erratum: [Phys. Rev. C 82, 039903 (2010)] https://doi.org/10.1103/PhysRevC.82.039903, https://doi.org/10.1103/PhysRevC.81.054905 [arXiv:1003.0194 [nucl-th]]

  29. 29.

    C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Nucl. Phys. A 904905, 409c (2013)

    ADS  Article  Google Scholar 

  30. 30.

    G.Y. Qin, H. Petersen, S.A. Bass, B. Muller, Phys. Rev. C 82, 064903 (2010). https://doi.org/10.1103/PhysRevC.82.064903 ([arXiv:1009.1847 [nucl-th]].)

  31. 31.

    U. Heinz, R. Snellings, arXiv: 1301.2826

  32. 32.

    P. Sorensen, arXiv:0808.0503

  33. 33.

    A. Mocsy, P. Sorensen, Nucl. Phys. A 855, 241 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    J.I. Kapusta, Nucl. Phys. A 862–863, 47 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    J.Y. Ollitrault, J. Phys. Conf. Ser. 312, 012002 (2011)

    Article  Google Scholar 

  36. 36.

    K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 107, 032301 (2011) https://doi.org/10.1103/PhysRevLett.107.032301[arXiv:1105.3865 [nucl-ex]]

  37. 37.

    A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 252301 (2011) https://doi.org/10.1103/PhysRevLett.107.252301[arXiv:1105.3928 [nucl-ex]]

  38. 38.

    G. Aad et al. [ATLAS Collaboration], JHEP 1311, 183 (2013) https://doi.org/10.1007/JHEP11(2013)183[arXiv:1305.2942 [hep-ex]]

  39. 39.

    R.A. Lacey, R. Wei, N.N. Ajitanand, A. Taranenko, Phys. Rev. C 83, 044902 (2011). https://doi.org/10.1103/PhysRevC.83.044902 ([arXiv:1009.5230 [nucl-ex]].)

  40. 40.

    R.S. Bhalerao, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 84, 034910 (2011). https://doi.org/10.1103/PhysRevC.84.034910 ([arXiv:1104.4740 [nucl-th]].)

  41. 41.

    J. Qian, U. W. Heinz, J. Liu, Phys. Rev. C 93, no. 6, 064901 (2016) https://doi.org/10.1103/PhysRevC.93.064901[arXiv:1602.02813 [nucl-th]]

  42. 42.

    L. V. Bravina et al., Eur. Phys. J. C 74, no. 3, 2807 (2014) https://doi.org/10.1140/epjc/s10052-014-2807-5[arXiv:1311.7054 [nucl-th]]

  43. 43.

    A. M. Sirunyan et al. [CMS Collaboration], arXiv:1910.08789 [hep-ex]

  44. 44.

    S. Dodelson, Modern cosmology (Academic Press, California, 2003)

    Google Scholar 

  45. 45.

    T.A. Trainor, D.T. Kettler, Int. J. Mod. Phys. E 17, 1219 (2008). https://doi.org/10.1142/S0218301308010465 ([arXiv:0704.1674 [hep-ph]].)

  46. 46.

    P. Naselsky et al., Phys. Rev. C 86, 024916 (2012). https://doi.org/10.1103/PhysRevC.86.024916 ([arXiv:1204.0387 [hep-ph]].)

  47. 47.

    G. Sarwar, J. e. Alam, Int. J. Mod. Phys. A 33, no. 08, 1850040 (2018) https://doi.org/10.1142/S0217751X18500409[arXiv:1503.06019 [nucl-th]]

  48. 48.

    F. J. Llanes-Estrada, J. L. Muoz Martinez, Nucl. Phys. A 970, 107 (2018) https://doi.org/10.1016/j.nuclphysa.2017.11.005[arXiv:1612.05036 [hep-ph]]

  49. 49.

    G. Sarwar, S. K. Singh, J. e. Alam, Int. J. Mod. Phys. A 33, no. 20, 1850121 (2018) https://doi.org/10.1142/S0217751X1850121X[arXiv:1711.03743 [nucl-th]]

  50. 50.

    M. Machado, P. H. Damgaard, J. J. Gaardhje, C. Bourjau, Phys. Rev. C 99, no. 5, 054910 (2019) https://doi.org/10.1103/PhysRevC.99.054910[arXiv:1812.07449 [hep-ph]]

  51. 51.

    M. Machado, arXiv:1907.00413 [hep-ph]

  52. 52.

    S. Basu, R. Chatterjee, B.K. Nandi, T.K. Nayak, AIP Conference Proceedings 1701, 060004 (2016). (arXiv: 1405.3969)

  53. 53.

    P. Staig, E. Shuryak, Phys. Rev. C 84, 034908 (2011), see also, ibid Phys. Rev. C84, 044912 (2011)

  54. 54.

    P.S. Saumia, A.M. Srivastava, Mod. Phys. Lett. A 31, 1650197 (2016)

    ADS  Article  Google Scholar 

  55. 55.

    J. Jia for the ATLAS Collaboration, arXiv: 1107.1468

  56. 56.

    ALICE Collaboration, arXiv: 2002.00633

  57. 57.

    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    ADS  Article  Google Scholar 

  58. 58.

    Jie Zhao, IJMP A 33, 1830010 (2018)

    ADS  Google Scholar 

  59. 59.

    K. Tuchin, Phys. Rev. C 83, 017901 (2011)

    ADS  Article  Google Scholar 

  60. 60.

    K. Tuchin, Phys. Rev. C 82, 034904 (2010)

    ADS  Article  Google Scholar 

  61. 61.

    L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    ADS  Article  Google Scholar 

  62. 62.

    E. Stewart, K. Tuchin, Phys. Rev. C 97, 044906 (2018)

    ADS  Article  Google Scholar 

  63. 63.

    J. Adams, U.H. Danielsson, D. Grasso, H. Rubinstein, Phys. Lett. B 388, 253 (1996)

    ADS  Article  Google Scholar 

  64. 64.

    R.K. Mohapatra, P.S. Saumia, A.M. Srivastava, Mod. Phys. Lett. A 26, 2477 (2011)

    ADS  Article  Google Scholar 

  65. 65.

    K. Tuchin, J. Phys. G 39, 025010 (2012)

    ADS  Article  Google Scholar 

  66. 66.

    J.-Y. Ollitrault, Eur. J. Phys. 29, 275 (2008)

    Article  Google Scholar 

  67. 67.

    R.S. Bhalerao, J.P. Blaizot, N. Borghini, J.-Y. Ollitrault, Phys. Lett. B 627, 49 (2005)

    ADS  Article  Google Scholar 

  68. 68.

    A. Mignone, G. Bodo, Mon. Not. R. Astron. Soc. 368, 1040 (2006)

    ADS  Article  Google Scholar 

  69. 69.

    Arpan Das, Shreyansh S. Dave, Saumia P.S., Ajit M. Srivastava, PRC 96, 034902 (2017)

  70. 70.

    G. Inghirami et al., Eur. Phys. J. C 76, 659 (2016)

    ADS  Article  Google Scholar 

  71. 71.

    G. Inghirami et al., Eur. Phys. J. C 80, 293 (2020)

  72. 72.

    D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009)

    ADS  Article  Google Scholar 

  73. 73.

    V. Roy, S. Pu, L. Rezzolla, D.H. Rischke, Phys. Rev. C 96, 054909 (2017)

    ADS  Article  Google Scholar 

  74. 74.

    S. Pu, D.L. Yang, Phys. Rev. D 93, 054042 (2016)

    ADS  Article  Google Scholar 

  75. 75.

    G.S. Bali, F. Bruckmann, G. Endrdi, A. Schäfer, Phys. Rev. Lett. 112, 042301 (2014)

    ADS  Article  Google Scholar 

  76. 76.

    L.G. Pang, G. Endrodi, H. Petersen, Phys. Rev. C 93, 044919 (2016)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with Sanatan Digal, Minati Biswal, and Abhishek Atreya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. S. Saumia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dave, S.S., Saumia, P.S. & Srivastava, A.M. Initial fluctuations and power spectrum of flow anisotropies in relativistic heavy-ion collisions. Eur. Phys. J. Spec. Top. 230, 673–688 (2021). https://doi.org/10.1140/epjs/s11734-021-00021-3

Download citation