Skip to main content
Log in

Network-based exploration of basin precipitation based on satellite and observed data

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Adequate and efficient precipitation data is a major concern due to its spatiotemporal variability and topographic and climatic factors. Satellite-based products are an alternative for a reliable precipitation estimate in basins having a complicated topography and diverse climate zones. Satellite products with global coverage and continuous data are freely available; however, understanding spatial connections is essential for reliable hydrological applications. In this study, complex network concepts like clustering coefficient, degree, degree distribution, average neighbour and architecture employed to investigate spatial connections in a basin. We also identified influential grid points in the precipitation network using weighted degree betweenness. Our results reveal that the correlation method does not significantly affect the network topology. However, the correlation threshold influences the spatial distribution of the clustering coefficient and degree values of precipitation network. The spatial distribution of clustering coefficient and degree indicated an inverse relationship independent of similarity measures and correlation thresholds. The architecture of precipitation based on satellite and observed data shows small-world behaviour for the certain correlation threshold range. Our findings unravel spatial precipitation connections and provide a way for hydrological applications in further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.E. Trenberth, A. Dai, R.M. Rasmussen, D.B. Parsons, Bull. Am. Meteorol. Soc. 84, 1205 (2003)

    Article  ADS  Google Scholar 

  2. R.K. Guntu, M. Rathinasamy, A. Agarwal, B. Sivakumar, J. Hydrol. 587, 124916 (2020)

    Article  Google Scholar 

  3. M. Sivapalan, G. Blöschl, J. Hydrol. 204, 150 (1998)

    Article  ADS  Google Scholar 

  4. B. Praveen, S. Talukdar, Shahfahad et al., Sci. Rep. 10, 10342 (2020). https://doi.org/10.1038/s41598-020-67228-7

  5. M. Rathinasamy, A. Agarwal, B. Sivakumar, N. Marwan, J. Kurths, Stoch. Environ. Res. Risk Assess. 33, 2053 (2019)

    Article  Google Scholar 

  6. D. Raje, P.P. Mujumdar, Adv. Water Resour. 33, 312 (2010)

    Article  ADS  Google Scholar 

  7. Z. Wang, M. Jusup, H. Guo, L. Shi, S. Geček, M. Anand, M. Perc, C.T. Bauch, J. Kurths, S. Boccaletti, H.J. Schellnhuber, Proc. Natl. Acad. Sci. USA 117, 17650 (2020)

    Article  Google Scholar 

  8. A. Bárdossy, T. Das, Hydrol. Earth Syst. Sci. 12, 77 (2008)

    Article  ADS  Google Scholar 

  9. M. Ekström, P.D. Jones, Int. J. Climatol. 29, 79 (2009)

    Article  Google Scholar 

  10. M.K.B.M. Aziz, F. Yusof, Z.M. Daud, Z. Yusop, M.A. Kasno, Int. J. Geomate. 11, 2422 (2016)

    Google Scholar 

  11. F.J. Tapiador, F.J. Turk, W. Petersen, A.Y. Hou, E. García-Ortega, L.A.T. Machado, C.F. Angelis, P. Salio, C. Kidd, G.J. Huffman, M. de Castro, Atmos. Res. 104–105, 70 (2012)

    Article  Google Scholar 

  12. P. Xie, A.Y. Xiong, J. Geophys. Res. Atmos. 116, 1 (2011)

    Article  Google Scholar 

  13. S.K. Adhikary, A.G. Yilmaz, N. Muttil, Hydrol. Process. 29, 2582 (2015)

    Article  ADS  Google Scholar 

  14. K.K. Yilmaz, T.S. Hogue, K.L. Hsu, S. Sorooshian, H.V. Gupta, T. Wagener, J. Hydrometeorol. 6, 497 (2005)

    Article  ADS  Google Scholar 

  15. A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, R. Oki, K. Nakamura, T. Iguchi, Bull. Am. Meteorol. Soc. 95, 701 (2014)

    Article  ADS  Google Scholar 

  16. H. Ashouri, K.L. Hsu, S. Sorooshian, D.K. Braithwaite, K.R. Knapp, L.D. Cecil, B.R. Nelson, O.P. Prat, Bull. Am. Meteorol. Soc. 96, 69 (2015)

    Article  ADS  Google Scholar 

  17. J. Shi, F. Yuan, C. Shi, C. Zhao, L. Zhang, L. Ren, Y. Zhu, S. Jiang, Y. Liu, Water (Switzerland) 12, 1 (2020)

    Google Scholar 

  18. G.J. Huffman, R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, D.B. Wolff, J. Hydrometeorol. 8, 38 (2007)

    Article  ADS  Google Scholar 

  19. R.J. Joyce, J.E. Janowiak, P.A. Arkin, P. Xie, J. Hydrometeorol. 5, 487 (2004)

    Article  ADS  Google Scholar 

  20. N. Boers, B. Bookhagen, N. Marwan, J. Kurths, J. Marengo, Geophys. Res. Lett. 40, 4386 (2013)

    Article  ADS  Google Scholar 

  21. S.K. Jha, H. Zhao, F.M. Woldemeskel, B. Sivakumar, J. Hydrol. 527, 13 (2015)

    Article  ADS  Google Scholar 

  22. S.K. Jha, B. Sivakumar, J. Hydrol. 554, 482 (2017)

    Article  ADS  Google Scholar 

  23. N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Clim. Dyn. 39, 971 (2012)

    Article  Google Scholar 

  24. I. Naufan, B. Sivakumar, F.M. Woldemeskel, S.V. Raghavan, M.T. Vu, S.Y. Liong, J. Hydrol. 556, 1232 (2018)

    Article  ADS  Google Scholar 

  25. B. Sivakumar, F.M. Woldemeskel, Environ. Model. Softw. 69, 55 (2015)

    Article  Google Scholar 

  26. Y. Xu, F. Lu, K. Zhu, X. Song, Y. Dai, Water (Switzerland) 12 (2020)

  27. S. Scarsoglio, F. Laio, L. Ridolfi, PLoS One 8 (2013)

  28. J.B. Elsner, T.H. Jagger, E.A. Fogarty, Geophys. Res. Lett. 36, 1 (2009)

    Article  Google Scholar 

  29. G. Bianconi, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 91, (2015)

  30. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Sivakumar, Stoch. Environ. Res. Risk Assess. 29, 761 (2014)

    Article  Google Scholar 

  32. M. Gosak, R. Markovič, J. Dolenšek, M. Slak Rupnik, M. Marhl, A. Stožer, M. Perc, Phys. Life Rev. 24, 118 (2018)

    Article  ADS  Google Scholar 

  33. E. Estrada, The Structure of complex networks (Oxford University Press, Oxford, 2011)

    Book  Google Scholar 

  34. M.J. Halverson, S.W. Fleming, Hydrol. Earth Syst. Sci. 19, 3301 (2015)

    Article  ADS  Google Scholar 

  35. S. Tiwari, S.K. JJha, A. Singh, Sci. Rep. 10, 9761 (2020). https://doi.org/10.1038/s41598-020-66363-5

  36. A. Agarwal, N. Marwan, R. Maheswaran, U. Ozturk, J. Kurths, B. Merz, Hydrol. Earth Syst. Sci. 24, 2235 (2020)

  37. Y. Xu, F. Lu, K. Zhu, X. Song, Y. Dai, Water (Switzerland) 12, 1 (2020)

    Google Scholar 

  38. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Spec. Top. 174, 157 (2009)

    Article  Google Scholar 

  39. A. Agarwal, L. Caesar, N. Caesar, Marwan et al., Sci. Rep. 9, 8808 (2019). https://doi.org/10.1038/s41598-019-45423-5

  40. A.Y. Sun, J. Chen, J. Donges, Nonlinear Process. Geophys. 22, 433 (2015)

  41. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  42. M. Rubinov, O. Sporns, Neuroimage 52, 1059 (2010)

    Article  Google Scholar 

  43. P. Erdős, A. Rényi, Acta Math. Acad. Sci. Hungaricae 12, 261 (1964)

    Article  Google Scholar 

  44. L. Surinaidu, U. Amarasinghe, R. Maheswaran, M.J. Nandan, H2Open J. 3, 457 (2020)

    Article  Google Scholar 

  45. M. Monirul Qader Mirza, R.A. Warrick, N.J. Ericksen, Clim. Change 57, 287 (2003)

    Article  Google Scholar 

  46. R.K. Guntu, R. Maheswaran, A. Agarwal, V.P. Singh, J. Hydrol. 590, 125236 (2020)

    Article  Google Scholar 

  47. R.K. Guntu, P.K. Yeditha, M. Rathinasamy, M. Perc, N. Marwan, J. Kurths, A. Agarwal, Chaos 30 (2020)

  48. D.S. Pai, L. Sridhar, M. Rajeevan, O.P. Sreejith, N.S. Satbhai, B. Mukhopadhyay, Mausam 1, 1 (2014)

    Article  Google Scholar 

  49. J. Ai, H. Zhao, K.M. Carley, Z. Su, H. Li, Eur. Phys. J. B 86 (2013)

  50. Y. Liu, J. Kurths, Phys. Rev. E 100, 1 (2019)

    Google Scholar 

  51. S. Garcia, A. Mejia, Adv. Water Resour. 130, 314 (2019)

    Article  ADS  Google Scholar 

  52. M.E.J. Newman, Phys. Rev. Lett. 89, 1 (2002)

    Google Scholar 

  53. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. B. Bollobás, O.M. Riordan, Handb. Graphs. Networks 1 (2004)

  55. K. Fang, B. Sivakumar, F.M. Woldemeskel, J. Hydrol. 545, 478 (2017)

    Article  ADS  Google Scholar 

  56. W.R. Tobler, Econ. Geogr. 46, 234 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the joint funding support from the University Grant Commission (UGC) and DAAD under the framework of Indo-German Partnership in Higher Education (IGP).

Author information

Authors and Affiliations

Authors

Contributions

GMA and RKG: data curation, formal analysis, investigation, methodology, conceptualization resources, software, writing—original draft. AA: funding acquisition, conceptualization, project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to Ankit Agarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadhawe, M.A., Guntu, R.K. & Agarwal, A. Network-based exploration of basin precipitation based on satellite and observed data. Eur. Phys. J. Spec. Top. 230, 3343–3357 (2021). https://doi.org/10.1140/epjs/s11734-021-00017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00017-z

Navigation